

University of Cambridge
Department of Physics

Computational Physics

Self-study guide 2

Programming in Fortran 95

Dr. Rachael Padman
Michaelmas 2007

Acknowledgements:

This handout was originally prepared by Dr. Paul Alexander, and has been updated and
maintained by Dr Peter Haynes of the TCM group.

1. The Basics

In this section we will look at the basics of what a program is and how to make the program
run or execute.

The non-trivial example programs can be found in the directory:
$PHYTEACH/part_2/examples

with the name of the file the same as that of the program discussed in this guide.

Some sections are more advanced and are indicated clearly indicated by a thick black line
to the right of the text. These can be skipped certainly on a first reading and indeed you will
be able to tackle the problems without using the material they discuss.

1.1 A very simple program

A program is a set of instructions to the computer to perform a series of operations. Those
operations will often be mathematical calculations, decisions based on equalities and
inequalities, or special instructions to say write output to the screen. The program consists
of “source code” which is “stored” in a text file. This code contains the instructions in a
highly structured form. Each computer language has a different set of rules (or syntax) for
specifying these operations. Here we will only consider the Fortran 90/95 (F95 for short)
programming language and syntax.

 Using emacs enter the following text into a file called ex1.f90, the .f90 part of
the file name is the extension indicating that this is program source code written in
the Fortran 90/95 language

This is a complete F95 program.

The first and last lines introduce the start of the program and show where it ends. Between
the first and last lines are the program “statements”. The lines beginning with an
exclamation mark are special statements called comments. They are not instructions to the
computer, but instead are there to enable us (the programmer) to impro ve the readability
of the program and help explain what the program is doing.

The line beginning write is a statement giving a specific instruction to print to the screen.

Note that except within quotes:

 Upper and lower case are NOT significant

(different from Unix commands and files)

 Blank lines and spaces are not significant.

1.2 Running the program

Before we can run the program we must get the computer to convert this symbolic
language (F95) into instructions it can understand directly. This process is called
“compilation”. At the same time the computer will check our program source for errors in
the syntax, but not for errors in our logic! In general programs will be assembled from
source in many files; bringing all of these instructions together is called “linking”. We
perform both of these tasks using the Unix command f95.

 Type the following, the -o is an option saying where to place the output
which in this case is a program which is ready to run, we call this an executable. (The
default executable name is a.out).

f95 -o ex1 ex1.f90

 If you haven’t made any typing errors there should be no output to the
screen from this command, but the file ex1 should have been created. By
convention executable programs under Unix do not normally have a file
extension (i.e. no “.xxx” in the file name).

 To run the program type:

./ex1

 Most Unix commands are files which are executed. The shell has a list
of directories to search for such files, but for security reasons this list does not
contain the current directory. The ‘./’ (dot slash) before ex1 tells the shell
explicitly to look in the current directory for this file.

 The output should be the words “ Hello there”.

 What happens if you make an error in the program? To see this let’s make a
deliberate error. Modify the line beginning write to read:

write(*,*) ’Hello there’ ’OK’

 Save the file, and compile again :

f95 -o ex1 ex1.f90

 This time you get errors indicating that the syntax was wrong; i.e. you
have not followed the rules of the F95 language! Correct the error by changing
the source back to the original, recompile and make sure the program is
working again.

1.3 Variables and expressions

The most important concept in a program is the concept of a variable. Variables in a
program are much like variables in an algebraic expression, we can use them to hold values

and write mathematical expressions using them. As we will see later F95 allows us to have
variables of different types, but for now we will consider only variables of type real.
Variables should be declared before they are used at the start of the program. Let us use
another example to illustrate the use of variables.

 Enter the following program and save it to the file ex2.f90

 Compile and run the program and check the output is what you expect
f95 -o ex2 ex2.f90

./ex2

This program uses four variables and has many more statements than our first example.
The variables are “declared” at the start of the program before any executable statements
by the four lines:

After the declarations come the executable statements. Each statement is acted upon
sequentially by the computer. Note how values are assigned to three of the variables and
then an expression is used to calculate a value for the fourth (s).

Unlike in an algebraic expression it would be an error if, when the statement calculating the
displacement was reached, the variables g, t and u had not already been assigned values.

Some other things to note:

1. Comments are used after the declarations of the variables to explain what
each variable represents.

2. The ‘*’ represents multiplication

3. The ‘**’ is the operator meaning “raise to the power of”, it is called technically
exponentiation.

4. In this program we have used single letters to represent variables. You may
(and should if it helps you to understand the program) use longer names. The
variable names should start with a character (A-Z) and may contain any character
(A-Z), digit (0-9), or the underscore (_) character.

5. Upper and lower case are not distinguished. For example therefore the

variables T and t, and the program names vertical and Vertical are
identical.

The usefulness of variables is that we can change their value as the program runs.

All the standard operators are available in expressions. An important question is if we have
the expression

g * t **2

what gets evaluated first? Is it g*t raised to the power of 2 or t raised to the power 2 then
multiplied by g? This is resolved by assigning to each operator a precedence; the highest
precedence operations are evaluated first and so on. A full table of numeric operators is (in
decreasing precedence)

Let’s look at ways of improving this program. An important idea behind writing a good
program is to do it in such a way so as to avoid errors that you may introduce yourself!
Programming languages have ways of helping you not make mistakes. So let’s identify
some possible problems.

 The acceleration due to gravity is a constant, not a variable. We do not wish
its value to change.

 We want to avoid using a variable which is not given a value; this could

happen if we mistyped the name of a variable in one of the expressions.

Consider the following modified form of our program:

We have changed three lines and some of the comments. The line:

implicit none

is an important statement which says that all variables must be defined before use. You
should always include this line in all programs. 1

The second change is to the line:

real, parameter :: g = 9.8

This in fact defines g to be a constant equal to the value 9.8; an attempt to reassign g via a
statement like the one in the original version (g = 9.8 on a line by itself) will now lead to an
error. The syntax of this statement is as follows: After the definition of the variable type
real we give a series of options separated by commas up until the ‘::’ after which we give
the variable name with an optional assignment.

1 It is an unfortunate legacy of older versions of Fortran that you could use variables without defining them,
and in that case Fortran supplied rul es to determine what the variable type was.

We will meet more options later.

Try out these new ideas:

 Make these changes and make sure the program compiles.

 Now make some deliberate errors and see what happens. Firstly add back in
the line g = 9.8 but retain the line containing the parameter statement.

 Compile and observe the error message.

 Now change one of the variables in the expression calculating s, say change u
to v. Again try compiling.

 Fix the program.

1.4 Other variable types: integer, complex and character

As we have hinted at, there are other sorts of variables as well as real variables. Important
other types are integer, complex and character.

Let’s first consider integer variables; such variables can only hold integer values. This is
important (and very useful) when we perform calculations. It is also worth pointing out
now that F95 also distinguishes the type of values you include in your program. For
example a values of ‘3.0’ is a real value, whereas a value of ‘3’ without the ‘.0’ is an integer
value. Some examples will illustrate this.

Enter the following program:

First some things to note about the program:

1. We can declare more than one variable of the same type at a time by
separating the variable names with commas:

real :: d, r, rres

2. We can place more than one statement on a line if we separate them with a
semicolon:

d = 2.0 ; r = 3.0

 Compile and run the program. Note the different output. The rule is that for
integer division the result is truncated towards zero. Note that the same rules apply
to expressions containing a constant. Hence:

 Make sure you are happy with these rules; alter the program and try other
types of expression.

Some expressions look a little odd at first. Consider the following expression:

n = n + 1

where n is an integer. The equivalent algebraic expression is meaningless, but in a program
this is a perfectly sensible expression. We should interpret as:

“Evaluate the right hand side of the expression and set the variable on the left hand side to the
value evaluated for the right hand side”.

The effect of the above expression is therefore to increment the value of n by 1. Note the
role played by the ‘=’ sign here: it should be thought of not as an equality but instead as an
“assignment”.

The complex type represents complex numbers. You can do all the basic numerical
expressions discussed above with complex numbers and mix complex and other data types
in the same expression. The following program illustrates their use.

 Enter the program, compile and run it. Make sure you understand the output.

The character data type is used to store strings of characters. To hold a string of characters
we need to know how many characters in the string. The form of the definition of
characters is as follows:

character (len = 10) :: word

! word can hold 10 characters

We will meet character variables again later.

1.5 Intrinsic functions

So far we have seen how to perform simple arithmetic expressions on variables. Real
problems will involve more complicated mathematical expressions. As we shall see later,
F95 enables you to define your own functions which return values. However, some
functions are so common and important that they are provided for us as part of the
language; these are called intrinsic functions.

Let us consider a program to compute projectile motion. The program computes the
horizontal, x, and vertical, y, position of the projectile after a time, t: 2

 Compile and run the program. It will wait. The statement “read(*,*)…” is
requesting input from you. Enter three values for a, t and u. You should now get
some output.

 Examine this program carefully and make sure you understand how it works.

 Note especially how we use the functions cos, sin, atan and sqrt much as you
would use them in algebraic expressions. As always upper and lower case are
equivalent.

1.6 Logical controls

So far all the programming statements we have met will simply enable us to produce
efficient calculators. That is useful, but there is a lot more to programming. In this and
Section 1.8 we introduce two crucial ideas. The first is the idea of taking an action
conditional upon a certain criteria being met. An example will help to introduce this idea.
For many years it was the case in Part IA of the Tripos that your maths mark was only
included if it improved your overall result. Let us write a program to perform that simple
sum. We read in four marks and output a final average.

 Compile and run this program and make sure you understand how it works.

 Note how the statements are indented. We use indenting to help show the
logical structure of the program; indented statements are executed depending on
the output of the test done by the if statement. The indenting is not essential, but it
leads to a program which is much easier to follow. If you choose this style you can
indent each level by any number of spaces as you wish.

The if statement is the simplest, but most important, of a number of ways of changing what
happens in a program depending on what has gone before. It has the general form:

if (logical expression) action

As another example we can use it to check for negative values:

if (x < 0) x=0 ! replace negative x with zero

The if construct may also be used in more extended contexts (as above), such as:

if (logical expression) then
 xxx

 else

 xxx

end if

Here if the condition is false the statements following the else are executed. We can also
include additional tests which are treated sequentially; the statements following the first
logical test to be reached which is true are executed: if (logical expression) then

if (logical expression) then
 xxx

else if (logical expression) then
 xxx

else

 xxx

end if

 As an exercise consider the following. Suppose the rules for Part IA of the
Tripos were changed so that:

1. The full maths course is always counted in the average

2. Quantitative biology mark is only counted if it improves the average

3. Elementary maths for biology is never counted.

 Modify the program tripos1 to compute the average mark. One further piece
of information is required which is an integer code indicating the type of maths
paper taken. This integer code can be assumed to take the values: Full

 One possible solution is available in the examples directory as tripos2.f90

if clauses may appear nested, that is one inside another. Suppose we wish to compute the

expression which fails if d < 0 or a is zero. If these were entered by a user then
they could (incorrectly) take on these values. A good program should check this. Here is
some code to do this which illustrates nested if clauses

if (a /= 0.0) then

 if (d < 0.0) then

 write(*,*) ’Invalid input data d negative’

 else

 x = b * sqrt(d) / a

 end if

else

 write(*,*) ’Invalid input data a zero’

end if

1.7 Advanced use of if and logical comparisons

In a large program it is likely that if clauses will be nested, i.e. appear one within another.
This causes us no problems, but might make it less clear which end if goes with which if. To
overcome this we can name the if clauses. An example illustrates the syntax. Let’s use the
example we have just met:

outer: if (a /= 0.0) then
 inner: if (d < 0.0) then

 write(*,*) ’Invalid input data d negative’

 else inner

 x = b * sqrt(d) / a

 end if inner

else outer

 write(*,*) ’Invalid input data a zero’

end if outer

The names are outer and inner; note the syntax, especially the colon. Named if clauses are
useful when you want to make your intention clear, but are not essential.

The logical expressions we have met in if clauses can be used more generally with a logical
variable. Logical variables take on the value of .true. or .false.. Here is a simple example
which illustrates their use.

logical :: l1, l2

l1 = x > 0.0

l2 = y /= 1.0

if (l1 .and. l2) then…

This program fragment could equally well have been written

if ((x > 0.0) .and. (y /= 1.0)) then

Using logical variables may make some things easier to understand.

1.8 Repeating ourselves with loops: do

Loops are the second very important concept needed in a program. If a set of instructions
needs to be repeated, a loop can be used to do this repetition. As we shall see we have a lot
of control over the loop and this makes them extremely powerful; this is especially true
when combined with the if clauses we have just met.

The general form of the do loop is:

do var = start, stop [,step]
 xxx

end do

where as before the parts in square brackets are optional.

 var is an integer variable

 start is the initial value var is given

 stop is the final value

 step is the increment by which var is changed. If it is omitted, unity is
assumed

The loop works by setting var to start. If var stop the statements up to the end do are
executed. Then var is incremented by step. The process then repeats testing var against
stop each time around the loop.

 It is possible for the included statements never to be executed, for
instance if start > stop and step is 1.

This program is an example which computes factorials:

 Modify the factorial program as follows. Change 10 to 100 and insert the
following line before the end do.

if (n > 10) exit

 What output do you get? Why? The exit command terminates the loop.

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can

access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

