LEAN SOFTWARE DEVELOPMENT WITH KANBAN
DEVELOP SOFTWARE 3X FASTER

DIMITAR KARAIVANOV, CEO AT KANBANIZE

©

Why should you read this case study?

For the past 28 months, we were able to push out 26 new releases, with just two gaps in
December, when we celebrate Christmas. As a matter of fact, the versions were there, however,
we decided against releasing them because it might have meant very few people would make
use of the changes during the holidays.

With an average of six new features per month, we have released 150+ new features to
production. The living proof appears in our Kanbanize Blog (make sure to subscribe for
updates).

As of this moment, at Kanbanize we have a total of one (1) open customer issues. Yes, this is
not a joke, we have almost no open customer issues for a code base exceeding a million lines.
Of course, there are issues that we are just not aware of, but out of the reported ones, we’ve
fixed them all.

We have around sixty open internal issues, most of which are low priority. We are depleting
these quite quickly, so in around four months we expect to have zero open internal issues as

well.

We managed to create an eight-digit company in three years and effectively multiply the initial
funding by more than 30 times.

The numbers show that we must be doing something right and this book talks about the
engineering part of this modest success.

Okay, let’s do this!

https://kanbanize.com/blog/category/releases/

1. The Beginning

| co-founded Kanbanize because | envisioned the exponential adoption of the Kanban method
some 6 years ago (the name is not a coincidence). Back then (2010), | became a Lean
champion at a big German company. We were a team of Lean thinkers helping the RnD
department (and to some extent the entire company) change course from Waterfall to Lean and
Agile delivery methods.

To this day, | am not sure how | got this role and to be quite open, | have no idea why Christoph
chose me before other much more experienced managers in the company. | guess it was a
stroke of luck that would later prove even more significant than | anticipated at the time.
Christoph came from the biggest German software company - SAP. He was famous for
achieving outstanding results there and that's why our CTO invited him to take up the SVP
position.

I met Christoph for the first time a couple of months after he joined the company. We talked
about my team, which was responsible for the performance of the product suite. | remember
showing off the good results that we had got during the past two years, but he didn’t seem too
impressed. | realized later that he was probably not that interested in what we were actually
doing, but focused on assessing the people he could count on later. He had plans that none of
us could have suspected.

His plans turned out to be simple but revolutionary for the situation that we were all in. He was
on his way to establish a promotion process for the entire product suite (20+ products working
together). This basically meant the following:
1. Each product team had to have a nightly build and as many automated tests as possible.
2. All product builds had to be integrated each night and tens of thousands of automated
tests were executed against the entire product suite.
3. The teams were not allowed to work on other things unless their builds and tests ran
smoothly. Even if a single test was failing, the issue was marked as a blocker for the
whole suite and had to be resolved with the highest urgency.

Now, | want you to evaluate the chances of success of this approach, while keeping in mind that
it took some of the teams more than a month to build their products. That’s right - the last
successful build for some products was more than a month old and these same guys had to not
only build every day, but also run automation tests, none of which could fail. Quite revolutionary
indeed.

In the beginning, people thought Christoph was not serious about the promotion process and
even ridiculed his approach. However, they soon realized that he wasn’t joking and started
working hard to get this whole thing done. It took everyone a lot of time to get there, but after an

year things started to look better. We had a well-oiled promotion process of consistently
producing stable and well-integrated suite builds, representing 20+ products working together.

A lot of success followed. We were able to release a super high-quality release on time and that
had not happened for many years prior to the changes. We started adding more tests to the
promotion process - performance tests, upgrade tests, installation tests, etc. In my team we
were able to detect a performance regression on the next day after the release was introduced.
Just think how many companies have performance tests in the first place and then think how
many of those companies can detect regressions throughout the promotion cycle of 20
products. We were nailing it down every single day and, in fact, there were a lot of performance
bottlenecks fixed without even raising promotion blockers for them. This was a sign that the
product teams could actually spend time improving the product’s architecture and not just put
out fires, as they were used to.

Watching all of this from a first person perspective and actually being an active part of the
transformation got me really fascinated. | was amazed by the effectiveness of Christoph’s ideas.
That got me further into Lean and | started to develop and test my own ideas in the teams with
which | worked. That’s how | learned about Kanban and this was the element that changed my
life for good.

Meanwhile, one of the main initiatives that we had with the Lean Thinkers team was the
“Feature Management” topic. The problem there was that there were many user stories
distributed across 20+ teams and there was no reasonable tracking as to of what was
happening on the feature level. In other words, only the corresponding product manager was
partially aware of what was happening in the team and there was absolutely no way to figure out
the progress outside this group. Apart from that, there were many cross-team features that were
usually delayed, due to the lack of synchronization and focus holding back some of the teams.

What we accomplished was to establish a mechanism that would allow us to track the overall
progress of all feature work for more than a dozen different products, split into five investment
areas. This mechanism would allow us to report weekly on how many features have been
completed, how many were being worked on, how many user stories were in progress, etc. all of
this distributed by investment area (management wanted to know where money was being
invested).

All the data was presented using a monstrous excel spreadsheet, which was generated once a
day from a central database. There was a working student whose primary job was to get the
data extracted from a tool starting with J and then get it imported into the central database, from
which the spreadsheet was seeded. Then, we would use this spreadsheet to run our weekly
meeting, during which we would come up with observations and suggestions for improvement.

There was also a separate meeting of all VPs of the corresponding investment areas to discuss
the feature status and take actions to unblock given features, if they appeared stuck.

This solution worked really well compared to the chaotic environment in the past, but, of course,
some things were far from perfect:

e Product managers lacked the visibility into what was happening in RnD and were always
unhappy, because “the development teams were very slow”.

e There was no mechanism to stop teams from starting new work, which caused a
dramatic increase of the features that were started, but not finished. At one point we had
to forbid starting new features so that we can get at least something out of the door.

e The features that had to be worked on by more than one team were frequently left
behind and special synchronization efforts were always necessary.

Being involved with the Feature Management initiative, while at the same time experimenting
with Kanban in my teams, made it really easy for me to see that using a Kanban system on the
global feature level would solve a lot of problems (and expose a lot of new ones). Had we
implemented such a system, we could have:

e Ways to manage work in progress limits so that we achieve better flow and eventually
better throughput from the same people and resources.

e Transparency into the current progress, thus reducing status reporting and actually
making the reports much more accurate.

e The cycle time and block time metrics to support a Kaizen culture. Kaizen is only
possible if you have baselines and ways to track changes, be it positive or negative.

Pursuing this idea further, | started searching for better alternatives that would allow us to map
this whole management process. Looking at the different tool offerings, it became evident that
tooling support was years away from what | envisioned my organization needed. That was
understandable. After all, we were quite innovative with what we were doing and tooling had not
yet caught up.

That’s how Kanbanize was born — out of necessity. | was lucky to have Christo, a childhood best
friend of mine and now CTO and co-founder of the company, working on the first version. He
came up with a prototype after six months of work and | went ahead to demo it to the Lean
Thinkers team. | actually proposed Kanbanize as the official feature management instrument in
the company, but the project didn’t fly. It’s just that the company needed much more than we
could offer with the first immature version of the product (this was more than 5 years ago).

However, Christo and | could recognize the potential of this solution and we could probably see
what others didn’t, so we decided to quit our jobs and completely dedicate ourselves to the
dream to “Kanbanize the world”. This was, and still is, the best professional decision | have ever
made in my life.

Getting an investment from a local venture fund (thanks Eleven!), on-boarding Biso as a third
co-founder and quitting our lucrative jobs was the easy part. When we found ourselves in the
situation with an ugly beta-version, just $125,000 in the bank and a total revenue of $3,000, we
realized that we needed to act fast. We just had to find ways to make maximum impact with the
least amount of money possible and make the company profitable. Oddly enough, this looks
pretty much like the situation which Toyota were in when they started their automotive projects.
They were a small Japanese company that wanted to build cars, but didn’t have a lot of money
and know-how. That is how they created Lean - they just didn’t have the luxury not to.

Full of fear and hesitation we continued with our endeavor to Kanbanize the world. We became
a team of five guys, the three co-founders and two employees. We were getting some traction,
but it was far from what we needed. That’s when Christoph came back into the picture.

One day, | got an unexpected call from the HR manager of the office in Sofia. She told me that
Christoph wanted me to take the position of a Managing Director (the position from which Biso
had resigned in order to join Kanbanize). | declined right away, because | was fully dedicated to
Kanbanize, but | felt | should thank Christoph for this generous offer. | sent him a short “Thank
you” email. He replied. | replied again, and a couple of months later he became an investor in
the company. After all, it was a company conceived on the basis of his ideas, so his place on
our board was a well-deserved one.

Shortly after that, things just started to happen and although it was not easy, the world is a
much better place now. But if there is one thing that made us succeed, it is the Lean Thinking
that we’'ve mastered so well. My goal for the case study is to convey as much of this “Thinking”
as possible. Learning through experience is priceless, but if | could save you even a month of
mistakes, | would consider my mission successful.

2. Literature

Reading “Lean Thinking” by James J. Womack and Daniel T. Jones was how | initially became
acquainted with the concepts of Lean. The ideas it presented made so much sense that |
started reading book after book on similar subjects. Many of the things we do today would not
have been possible without some of the books | have had the privilege to read. That is why |
would like to share a distilled list of “must-reads” with you right away:

The Goal by Eliyahu M. Goldratt and Jeff Cox

Lean Thinking by James J. Womack and Daniel T. Jones

The Toyota Way by Jeffrey Liker

Kanban by David J. Anderson

The Principles of Product Development Flow by Donald G. Reinertsen

Lean Product and Process Development by Allen C. Ward and Durward Sobek
Lean Software Development by Mary and Tom Poppendieck

https://www.amazon.co.uk/Goal-Process-Ongoing-Improvement/dp/0566086654/ref=sr_1_1?ie=UTF8&qid=1463404164&sr=8-1&keywords=the+goal
https://www.amazon.co.uk/Lean-Thinking-Banish-Create-Corporation/dp/0743231643/ref=sr_1_1?ie=UTF8&qid=1463404062&sr=8-1&keywords=lean+thinking
https://www.amazon.co.uk/Toyota-Way-Management-Principles-Manufacturer/dp/0071392319/ref=sr_1_1?ie=UTF8&qid=1463404120&sr=8-1&keywords=the+toyota+way
https://www.amazon.co.uk/Kanban-Successful-Evolutionary-Technology-Business/dp/0984521402/ref=sr_1_1?ie=UTF8&qid=1463404189&sr=8-1&keywords=kanban
https://www.amazon.co.uk/Principles-Product-Development-Flow-Generation/dp/1935401009/ref=sr_1_2?s=books&ie=UTF8&qid=1463404214&sr=1-2
https://www.amazon.co.uk/Lean-Product-Process-Development-2nd-ebook/dp/B00IPNN1Z0/ref=sr_1_8?ie=UTF8&qid=1464003928&sr=8-8&keywords=allen+ward
https://www.amazon.com/Lean-Software-Development-Agile-Toolkit/dp/B00HEL13HW/ref=sr_1_1?s=books&ie=UTF8&qid=1470243750&sr=1-1&keywords=lean+software+development#nav-subnav

Find the time to read these books. They will be well worth your time.

3. Case Study: Lean Software Development at Kanbanize

Mastering Lean has been our task at Kanbanize for the past six years and, in this chapter, | am
going to share what we’ve learned and what is still a challenge. This is going to be a very
practical course and | hope you will find useful tips that you can directly apply to your work.

Before we start, | would like to quickly go through the reasons why Kanbanize was created in
the first place. The main idea for the tool was to ease the process of breaking down bigger
chunks of work into smaller pieces and to ensure seamless tracking not just on the user story
(task) level, but on the feature/project level too.

The issues that Kanbanize was meant to tackle were and still are:

Lack of visibility into the progress of individual features (or projects).

Too much context switching between multiple projects or tasks.

Slow development processes and overall poor productivity.

Lack of mechanism to prevent teams from uncontrollably starting new work and

therefore harm the overall performance of the company.

5. Inability of the product management to proactively work with the engineering teams due
to the lack of real-time status updates.

6. Lack of actionable metrics to be used for continuous improvement (Kaizen) initiatives.

7. Lack of consistently up-to-date status reports available not just for the management but
for everyone involved in the project.

8. Hard to use tools that were never meant to be used by product management, but just
engineers.

9. Show what engineering is working on so that product management won'’t always think
that developers are slow and lazy.

10. Product management engaging with individual engineers directly, due to the lack of

visibility of the actual progress.

N~

It took us more than ten years at corporations like SAP, Johnson Controls, Software AG,
ProSyst and six years at Kanbanize to get to where we are today and it won’t be exaggerated to
say that we are still in the beginning of the journey. However, knowing how much effort and
knowledge it took us to get to that stage, | would like to share some of our experience, so you
can make the transition not in six, but in probably one or two years.

Quick Company Overview

We are a product company and for the moment we are working on a single product, but we may
change this status really soon. Our release takt time (how often we deliver value to our
customers and how often they are ready to accept it) is one month, which means that we roll-out

new features to all our users every four weeks or so. Some of you may recognize a Scrum sprint
here, but what we do is actually quite different. Instead of planning what we will be able to
accomplish in a month, we do our best to accomplish as much as possible and, when the takt
time comes, we just release what has been completed. This is a fundamental difference
between Agile/Scrum and a Flow-based method, such as Kanban. | urge you think more about
that, it may sound like a minor difference, but it is, in fact, a huge gap in productivity between
these two approaches.

Our monthly release goals are:

Zero open customer defects (achieved consistently)

Zero high severity internal defects (achieved consistently)

Less total internal defects than last release (achieved consistently)

At least two major new features and at least two minor (achieved consistently)
Zero regression defects in each release (work in progress)

To give you a better perspective about the company structure, let us explore what service teams
(or also services) we have in the organization and how they interact with one another.

Product
Marketing

Product Product
Development | Management

Product Sales '8 Accounting

Automation Product
QA Support

Customer
Success

IT / DevOps

Service teams (at Kanbanize)

The use of the word “services” is intentional. We do have teams in the company, but we think of
them as services. A service has an input, processing steps and an output. In order to have all
services working well together, we have established rules to control how services take input
from other services, how work is actually being completed and what the output should be. We
can compare our company to a computer program that has the different modules talking to one
another via predefined interfaces. We do this despite the fact that we are all in the same office.
The support person may be sitting next to you, but instead of asking them to do something for
you, we insist that people create tickets in the Support Kanban board, which is essentially the
input for support. The same principle is with each and every service in the company, be it
marketing, sales or product management. This does not mean that we discourage face-to-face
communication. There are many situations when filing a ticket and discussing it personally is the
right thing to do and we do it quite often.

One feature we have in Kanbanize, which many users consider a limitation (at first), is the
predefined sections of the Kanban board. If you try to edit a board in Kanbanize, you will see
that there are three sections on that board - REQUESTED, IN PROGRESS, and DONE.

Requested In Progress Done
Limit- /0 Limit-/ 0 Limit-/ D
Tasks per row: 1 Tasks per row: 1 Tasks per row: 1

+ (3|7 + 13 7 + & 7

Default Swimlane

B 1?7

Add New Swimlane

Requested, In Progress and Done areas in Kanbanize

Why would we force everyone that uses our software to have to choose which column belongs
in which area? The answer is quite simple - each Kanban board is meant to be a service and
each service has an input (REQUESTED AREA), processing steps (IN PROGRESS AREA) and
output (DONE AREA). Having this separation, we can perform a much more sophisticated
analysis of the data in the board and provide feedback to the users.

Unsurprisingly, all services within our organization use Kanban (and Kanbanize) to do their job.
It is our universal delivery tool, which, integrated with email, turns out to be a really powerful
system that can be employed to serve various goals. However, this book is about product
development, so we will mainly discuss the services marked with green in the image above and
only partially touch on the orange ones. Let us get started...

Product Management

As shown on the Figure above, product management is one of the central services in a product
company. It is practically the bridge between product development and sales/marketing. Being a
central service, product management has to take care of multiple initiatives such as:

Articulating the product vision and strategy to all other services

Capturing customer feedback and converting it to meaningful features

Reporting on the current status to all interested parties

Actively researching new technology to stay up to date with the new trends

So how does a product manager come up with the product strategy in the first place? How does
she capture ideas, in a way that is easy to work with, without spending too much time
maintaining huge backlogs? What can be done to easily report on the progress? What metrics
are important?

These are all important questions and we will try to answer them all with concrete examples
from our daily work. First, we will go through the backlog management, then we will cover the
actual delivery model, which is in essence an Upstream Kanban implementation, and we will
finish with a set of important metrics to monitor.

The Product Backlog Board

According to Lean, maintaining an ordered list of ideas (backlog) is waste. It is waste because
working with hundreds of different ideas, always trying to refine them and prioritize them, takes
time. If they never get implemented, this time is simply wasted. However, you still need a way to
capture your ideas and customer feedback.

We do that with the so called “All Features” Kanban board. This is where we capture all the
ideas that we come up with as well as the customer feedback we receive. The board structure
looks like that:

Proj Run-time | Links and | Email Ease of Administr | Integratio | Process Mobile Misc
Mgmt s and Depende | and Use ation ns Governa
and Automati ncies Collabora nce
Analytics | on tion
High Priority

Medium Priority

Low Priority

The Structure of the Product Management Backlog in Kanbanize

The explanation of the columns listed above:

e Proj Mgmt and Analytics - this column contains ideas or requests related to how
managers track status and report on it. Also, this column covers the requests related to
the analytics module.

e Runtimes and Automation - if you have used Kanbanize you should know that the
runtime automation policies are the heart of our software. This is the way to automate
your processes with the help of super-flexible business rules. This column captures
ideas/requests regarding potential improvements in that area.

e Links and Dependencies - requests related to card linking and card dependencies.
These requests usually come from project managers trying to implement a portfolio
board (we will talk about that in a minute) or some sort of a schedule.

e Email and Collaboration - as the name suggests, this column covers the collaboration
part of the tool. This is mainly the Email Integration piece and the Moxtra collaboration
module (chat + screen sharing meetings) with which we are experimenting.

e Ease of Use - this one is easy to figure out. Here, we file requests that do not affect a
concrete area of the software but, rather, the overall user experience and usability.

e Administration - again, the name speaks for itself. This is where we keep all requests
related to administration.

e |Integrations - a lot of companies integrate Kanbanize with their own systems via the
developer’s API and this is the column for such requests.

e Process Governance - everything related to permissions or implementing concrete
behavior in the system is kept in this area.

Mobile - work related to the iOS and Android Kanbanize apps.
Miscellaneous - anything that does not fall in some of the categories above.

This is how the actual board looks in Kanbanize (this is a huge board. In order to get a sense of
it in its entirety, it has to be minimized to the point where nothing is readable, sorry).

L= L= L=
L= LT L= LT [Mamem)

| e - Fone -} L=

L=

L) Rone | | Bl Rons: | LT LT
| Fione - § Rone | | Fons J Rone -

The Product Management Backlog in Kanbanize

Y pmm perm

U iem pmm

o ——— a0

Let me ask you a question. Can you point out the area where we get most requests/ideas for? |
bet you can. Can you point out the second and the third? | think you can do that quite easily too.

You must be seeing the benefit of mapping your backlog in such a visual way. The keyword
here is seeing, because you can get a lot of meaningful information out of the board, despite the
fact that you cannot read a single character. Visualization of work is the first core practice in

Kanban and this example is just further proof that visualization is a really powerful tool.

Another effective approach, which is quite specific to the use of Kanbanize, does a really good
job for us too. It is a sort of voting system that allows us to immediately see which requests are

most popular. The realization is really simple - whenever a customer requests a new feature, a
new card is created on this board. If the feature has been requested before, this means that
such a card already exists on the board and, in such cases, we just create a subtask in that
card. In other words, a card with no subtasks has been requested just once, but a card with four
subtasks means that the feature has been requested five times in total. Here is how the first
swimlane (high priority) of the board looks in reality:

O T ST T T T T CEETTE
- - . - . - - r -) e -
2 2 S

(o2 e o]
e @
’ -
BT
[
-
il Mo O
[
-

The Product Management Backlog in Kanbanize with Subtask Details

Visualization is, once again, very helpful here (I have obscured the subtasks text, because this
is real communication coming from customers). We can very quickly see which of the requests

are most popular by just comparing the height of the different cards. The cards with more
subtasks are larger and this directly means that more people have requested this enhancement.
Now comes the “sexiest” part. We have a runtime policy which counts the number of subtasks
on all cards and if a card has up to 5 subtasks, the policy moves the card automatically to the
second swimlane. Another policy is configured to move the cards with 5+ subtasks to the first
swimlane (high priority). This is how we automatically maintain a list of the most important
features to work on. Here is how the policies look:

When Then

The following card fields are changed the updated card matches this filter create cards or subtasks

Add new action

sk Status Board is Add new

update the card details

Add new action

send notifications

Add new action

move the updated card

Subtasks automation policy in Kanbanize

When Then

The following card fields are changed the updated card matches this filter create cards or subtasks

Board is Add new action

All features

update the card details

ount greater than

send notifications

move the updated card

Subtasks automation policy in Kanbanize

The only thing needed here is the discipline to consistently capture requests as subtasks and
attach them to the correct card. It takes some time, but unless you use an automated voting
system, there is probably nothing more effective than what is suggested here. We are not big
fans of automated voting systems because feedback is only meaningful when you know who
gave it. With automatic voting systems you rarely know this information and, at least at
Kanbanize, we are hesitant to take decisions based on such feedback.

One potential issue with this approach is the fact that information may be duplicated if more
than one person works on such a board. That is why you should always use keywords in the
title of the card in order to make it easy to filter. What we always do is filter by a given keyword,
check if such feedback already exists and, only then, decide whether a new card should be
created or a subtask should be attached to one of the existing cards.

The Feature Management Board

In the previous section, we explored how ideas and feedback can be collected and prioritized in
a visual backlog. In the current section, we will see how we actually run the service that feeds
the development teams with work.

The board where we track the progress of features is called “Kanbanize-features Roadmap”. It
is not a roadmap in the real sense of the word, but provides some generic overview about when
features can be expected on production. It is important to mention that this board is a sort

of MASTER BOARD and it works in combination with other boards. In our particular case,
the other board that is involved in the product development process is the board of the
development team. Here is a scheme of the roadmap board structure:

Next 6 Next 3 Breakdo | Breakdo In Progress Done
Mnt Mnt wn wn
Done Ready Tech In Ready Ready
for Dev | Analysis | Develop for for

ment Sign-off | Producti
on

Reporting and Analytics

Links and Dependencies

Runtime Policies

Ease of Use

Administration

Collaboration

Mobile

API & Integrations

Miscellaneous

The Kanbanize-features Roadmap Board Scheme in Kanbanize

And here is how the actual board looks:

Next 6Mnt Next 3Mnt Breakdown OK Ready for Develo| Ready for Product Done
¥ P Tech Analysis inDevelopment Ready for Sign-off ¥
ment lon
Reporting & Analytics
210 210 10 oro s/o 0 L) 10 oio
3 - 0]
2 “
] SubmskTitle in Ul Widgers Weskly Status cations T
A the tmesheet repofs should be E
c report updated reat M
K [
L None TF
0 i A
eature
G R
of ciency/ c
segmentation =
1
v
E
Links [4 Requested, 0 In Progress, @ Done]
Runtime Policies [2 Requested, 0/n Frogress 0 Done]
Process Governance
1o 210 o0 /o] o/o /o oia o/a
o ¢ , 0]
) None O o
8 WIP limit onthe T
A feature level E
c M
K None i
L
o Do nac alkow A
& card to be =
moved 1o e
H
1
v
E
Ease of Use
are e e g/o o i 3/0 o/
2] - - - - 0]
= None “
B Save /L Show tme in my Make the Hotkey for T
A Board F workdog in commens and collapse / expand E
c human readable all columns / M
K None £ P
= :vuqué one 1 None 1 a
c feature More options in back: R
deadiine f er c
-
Abiiy o sort by 1
dateinthe v
history tab New Dashboard x
ul
Administration [2 Reg 01n Progress, 0 Done]
Collaboration /5 Requested, 0 in Progress, 0 Done]
Mobile
oo 00 (] 00 (] /o o 0io 2i0 /0
r 0]
8 05 (iPhone) T
A performance E
C boost (like M
K P
:
o A
G Log time for r
speof a0 date ¢
H
1
.
E
AP| & Integrations
/e o ° ° a0 e w/o oo ia ain
0] (o
8 T
A 3
c M
K P
L
o A
G R
c
H
1
v
E

Misc [T Requested 0In Frogress 0 Done]

The Kanbanize-features Roadmap Board in Kanbanize

It is obvious that the swimlanes represent the different categories the features can fall into, but it
is more interesting to take a look at the columns and their purpose.

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

» HTML (Free /Available to everyone)

» PDF /TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

» Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

N\~
Ej Free-Ebooks.net

http://www.free-ebooks.net/

