Getting Started with OpenGL ES 3+ Programming

Hans de Ruiter

Version 1.2 — 14 January 2019 — updated for ebook file formats
Version 1.1 — 5 April 2017

Copyright © 2017-2019 by Kea Sigma Delta Limited, all rights reserved.

Please Share this Book

Found this book useful and want to share it with others? Go for it! You can share it by giving others
this link:

https://keasigmadelta.com/gles3-sdI2-tutorial

We’ve done everything we can to make the contents of this book as accurate as possible. However,
due to the complex nature of the topics and possible human error, we cannot guarantee absolute
accuracy. Also, continual research and development means that things are ever changing. No liability
is assumed for losses or damages due to the information provided. You are responsible for your own
choices, actions, and results.

https://keasigmadelta.com/gles3-sdl2-tutorial
https://keasigmadelta.com/gles3-sdl2-tutorial

Table of Contents

LY Ao [Tox 1 o] o PRSP OTRTPPRROPRRTIS 5
WRO IS TNHS FFOI? ettt e et e et e e et e e et e e e snte e e snteeeanteeeaneeeeanes 5
Why OPeNGL ES 34 @N0 SDL27 ...ttt ettt 5
How to Get the Most Out of These TULOKIAIS..........eeeiiireiie e 6

WAL I T GEE STUCK? ...ttt et e et e ettt e e nt e e e nte e e enteeeanneeeanes 6

Tutorial 1: Getting STAITEAc..iiiiiiie e 8

Setting Up the Development ENVIFONMENTccuiiiiiiiieiie et 8
SELUP ON WINAOWS ...ttt ettt ettt et ettt et e s et 8
OUr First GLES3 & SDL2 PrOGIamcceiuiieiiiieeiieeasiieeesiieeesseeeesseeaesnaeaeasaeesssneesssseeesssesesnsesesnes 1
Headers and DefINITIONSccuiiiiiie et e e a et e et e e nre e e e nneeeeenneeeennes 11
SDL and OpenGL INIIAHZATION..........viiiiiiiieiii e 11
OPENING the WINAOW ...ttt ettt ettt 12
[TV Yo 1211 1 T RS 13
Wait Until the User Wants 0 QUILooiiiieiiieeiiis st sriin e se e e e snaee e eesnneeeannaee s 13
B I C= O Lo = N U | SO OUS PRSI 14
RUNNING ThE PIOGIAIM ...ttt ettt 16
oG] (0] 01 TP ROPR PP OTRTOPRP 17

Tutorial 2: HEllO THANGIEooeeeee et e e e et e e et e e enneeeanes 18
LI LT 1 110 OSSR 18
LC1=] a0 S U (=T o SRR 18
LI = o L] TP UPR TR 18

THE VEIEX SNAUET ...ttt e be e nee e 18
The Fragment SNAUETooiiiee et e e e et e e et a e et e e e nraeeesnaeeeanneeeas 19
Compiling and Linking the SNATEISccvviiiie e 20
Compiling @ SINGIE SNAUETcc.viieiiee e e e srar e e e e anrae e 21
Linking Shaders iNt0 @ PrOQraMoiiiiiiiiiie ettt e e e sra e e st e e snne e 24
ACHIVALING the SNAUBTcciiiii e et e st e e e et e e e s e e e s tneeareaeas 26
Creating the THANGIE ...t e et e e et e e e s e e e saeeeanes 27
The ACLUAI TIIANGIE «...oeeee et e et e e sae e e arae e 28
Drawing the THANQIE........cooiiee et e e e e s e e e st e e e aaaeeareaeas 29
(08 [T U] o PP ROPR TP 30
LSS] 1o PSPPSR 30
] (0] N1 PSPPSR 31

Tutorial 3: TEXTUIE MaPPINGeoiiieeiiiee ettt e s et e et e e et e e e st e e e arae e e snreaesneeeanes 33

LT LT IR - U (=T SO PRPP 33
Installing SDL_image 0N WINUOWSccoiiuiiiieiiiiie ettt e e e s s 33

Installing SDL_image on Other PIatfOrmMS..........ccviiiiiiiiiicie e 34

Texture MapPINg SNAGEES.oiiieie ettt ettt nre e 34
THE VEITEX SNAAET ... ettt e e e et e et e e e nnae e e nnteeeanteeens 34
The Fragment SNAUETcouiiii et 35
Binding the Sampler2D t0 @ TEXTUIE UNIE.........ccuiiiiiiiieiiieiee et 35

TEXEUIE LOAING ...tttk ekttt ekt ettt bb e ettt e bt e et et et 36
SWIZZIING ettt 37
LOAAING The TEXLUIEeeetie ettt ettt et nne e 38
Destroying/Deleting The TEXIUIEcoiiiiieiii ettt 41
USING TNE TEXEUIE ...ttt ettt ettt e st et eanb e nbee s 41

VerteX TeXTUIE COONTINALEScivveeiiieesiiee et e et e e st e e st e e st e e st e e asteeeesteeeasreeeaasaeeennteeennseeennseneas 42

[1T PP P PP UPPT R TTPPPPPPPPPUPT 43

T £ 1= PR OURROTRSST 43

LT oL g o IR T I B N I T OSSPSR 45

TNE TREOTY ettt b bt et et ab e e b et e b et e st nbe e nees 45

GELEING STAME ...ttt ettt ettt e bt e et e e be e et e e anbeentee s 46

] Y o g T T U o0 TSRS 46

MVP Matrix in the VErteX SNAGETccuiiiiiiii e 47

BUIIAING the 3D CUDE ..ot e e e e et a e e a e e e snaaeeanreeeas 48

Simulating the VIrtual WOTTGooooieeeec e e e 52

[= 11T PR SURROURSSTI 53

The DEPEN BUFFEE .. .eeeeeeecce et e e et e e st e e et e e s neeeanes 54

] (0] 01 PSR PPRTPUPRP 56

LIV o g = A I To] o | T o SRR 57

L 10 USSR 57
[1 TU ST o |1 T PSR 57
A 001 o] 0| I T | o SR OPRROPSRTRN 58
VL Lo AN I oo [=11 1= PR PRTPR 58

(CTC] a0 S =L (= [PPSR 59

R3] 1T o [T PRSP PPURPPRUPRPRRPY 59
THE VEIEX SNAUEE ... ettt et e et et e et e e teeaneee e 59
The Fragment SNAGETooiiiie it e e e et e et a e e b e e e st e e e anteeeatnee s 61

Adding the SUMface NOIMALScoouiiiiiee e e e s are e 63

Generating the New Uniform Variables............c.vooiiiiiiiic i 64

Lights, Camera, & ACLIONcocuiiiiiiee et e et e e s e e e sate e e s e e e s areeareee s 66

T (0 1= TP OURRTRRIS 67

TULOrIAl 587 ANTMALIONeiiiiiiiii ettt e bb e et bt e e bbe e e snbe e e anbeeeanes 68

(€T a0 IS = U g (=0 PSPPSR 68

TNE EVENT LOOP . ..tttk ettt h ekttt e bt ettt e et et 68
Frame-Rate Independent ANTMATION.ooiiiiiiiiiie e 69
The FUll Main LOOP COUR........eiiiiiiiietie ettt 70
EEXBICISES ..ttt E et E bt bt Rt b bbbttt b e 71
B T R\ 72
Updated Visual Studio TEMPIALE.ooiiiiiiei e 72
LBAIN IMOTE.....c et e e e e e e e et e e et e e e e e 72
Made Something INtereStiNG/AWESOME?ooiiiiiieiie ettt 72

Introduction

Welcome to this tutorial series, and congratulations for taking this first step. Maybe you’re interested
in creating a game from scratch, and/or want to understand the code. Maybe you’re dreaming of
writing your own game engine, or becoming a developer at a game studio. Or maybe you want to
learn graphics programming for some other reason entirely. Whatever the case, you’re here.

These tutorials will give you an accelerated path from zero through to rendering stuff in 3D. You will
learn modern OpenGL that’s usable on both desktop and mobile devices. No, it won’t meget you to
AAA game engine level as that’s a huge task. However, it will give you the fundamentals you need
before you can build more complicated stuff.

IMPORTANT: If your sole goal is to write a computer game and you don’t care about the code, then
you may wish to look for a ready-made game engine instead. There are many game engines out there
that can get your project underway faster. These tutorials are for those who want to learn how to do
graphics programming which will help you build custom graphics engines or tailor existing ones to
your needs.

Who is this For?

These tutorials are intended for people with almost zero OpenGL programming experience. Having
some C/C++ coding experience is helpful, but not required. The tutorials will explain the code at a
fairly basic level.

That said, if you have no programming experience, then | recommend learning the basics of
programming in C as well (e.g., follow this free online course: http://www.learn-c.org/).

Why OpenGL ES 3+ and SDL2?

There are a mind-boggling array of options out there: OpenGL, Direct-X, Vulkan, Metal, GLUT,
GLFW, etc. Which is best? How to choose?

I’ve chosen to teach OpenGL ES 3+ (GLES3) because it’s modern and available on all major mobile
devices and is usable on desktops too. This maximises your options. Systems like Direct-X and Metal
are restricted to specific platforms, and Vulkan is very complicated to use (definitely not good for
beginners).

SDL2 (or Simple Direct-media Layer 2) takes care of low-level stuff like opening windows/screens,
handling user input from joysticks, keyboards, touch, etc.. These tasks are normally platform
dependent, and SDL2 gives you a common way of using them. There are other options like GLFW
and GLUT, but I prefer SDL2. It has good support for both desktop and mobile devices, and provides
a wide range of features, including multi-touch support, image loading (via SDL_image), etc. SDL2
also provides access to OS native objects should you want to use platform-specific features.

Don’t worry about whether SDL2 really is the best choice for you because it can always be replaced
later if you wish. The key right now is to get started.

http://www.learn-c.org/

How to Get the Most Out of These Tutorials

Simply owning a copy of these tutorials won’t magically give you expertise. It takes work, or to put it
another way: “you still have to do your own push-ups.” Here are a few tips on how to get the most out
of these tutorials.

First, follow the tutorials step-by-step. They’ve been written in a specific order for a reason; it’s what
works best.

Write code by hand. It’s very tempting to copy and paste the code from this book to save time. Resist
that urge, because you’ll learn and remember more by typing out the code manually.

Next, try to go through the tutorials on a regular schedule, e.g., one per day or maybe one every few
days. You’ll learn and remember more with regular practise then trying to cram everything in a few
sessions (e.g., 1 hour a day beats 7 hour marathons once a week)

Third, do the exercises and perform your own experiments. Try changing the code to do something
else, e.g., draw a square instead of a triangle, change the texture or the colour, etc.

Finally, I’ve written a “Modern Graphics Programming Primer” to accompany these tutorials. While
the tutorials teach you how to code graphics, you’ll be more capable if you understand what the
hardware is doing (at least at a high level). The primer covers things such as: how modern GPUs work,
3D coordinate systems, and the underlying theory.

Get the primer at: https://keasigmadelta.com/graphics-primer

PROGRAMMING
PRIMER

IMPROVE YOUR GRAPHICS PROGRAMMING SKILLS BY
UNDERSTANDING THE THEORY AND HARDWARE

HANS DE RUITER

What if | Get Stuck?

There’s a lot to learn, and you’re likely to get stuck at some point. Here’s what to do:
1. Tryto figure it out yourself first

2. If you’re still stuck, search the internet for a solution. Chances are high that someone else has
experienced your problem already, and published a solution

3. Ask for help. Send me a message (https://keasigmadelta.com/support/)

https://keasigmadelta.com/graphics-primer
https://keasigmadelta.com/support/
https://keasigmadelta.com/support/
https://keasigmadelta.com/support/

Follow this process; resist the urge to jump to step 3 immediately. This isn’t for purely selfish reasons
(I can’t respond to huge numbers of queries); it’s also better for you. By following this process you’re
training yourself for developing software the real world. It’s how professional software developers
solve problems.

That said, don’t be afraid to reach out for help if you need it. I’'m happy to help, and knowing what
people get stuck on will help me improve these tutorials.

Tutorial 1. Getting Started

This tutorial we’ll be setting up our development environment, and creating a basic GLES3 app. It
won’t do much; just open a window and clear it to black. The goal is simply to get something basic
working.

Setting Up the Development Environment

To write GLES3 + SDL2 apps we need a suitable development environment (dev-environment) that
allows us to write code and compile it. There are two parts to this. First, we need to install the code
editor and compiler. Second, most dev-environments don’t come with GLES3 and SDL2 support out
of the box. Their dev-files need to be installed before we can use them.

NOTE: This tutorial currently only covers using Visual Studio on Windows. Don’t worry about

developing for mobile devices yet; just get the basics working on your desktop computers. If you’re
using MacOS X or some other platform then search the internet for how you set up a compiler (e.g.,
here’s one for SDL2 on MacOS X: http://lazyfoo.net/tutorials/SDL/01 hello_SDL/mac/index.php).

Setup on Windows

Microsoft provide a comprehensive dev-environment called Visual Studio. So download that now
from: https://www.visualstudio.com/downloads/

IMPORTANT: Download the free Visual Studio Community edition. The free version provides all
that you need.

Start the Visual Studio installer, and select the “Custom,” (Figure 1).

Choose the type of installation
Default
Includes C#/VB, Web and Desktop features

® Custom

Allows you to customize features for your installation

You can add or remove additional features at any time after setup via
Programs and Features in the Control Panel.

Figure 1: Choose the custom installation type.

Click the “Next” button. Next, make sure that you’re installing Visual C++ (see Figure 2).

http://lazyfoo.net/tutorials/SDL/01_hello_SDL/mac/index.php
https://www.visualstudio.com/downloads/

Select features

B Programming Languages

Figure 2: Select the features to install.

With this done, click “Next,” then “Install,” and wait for the installer to complete.

Installing the GLES3 & SDL2 Development Files
On Windows you need two sets of dev-files:

e Angle (for GLES3 support) - https://github.com/google/angle

e SDL2 - https://www.libsdl.org/download-2.0.php

The setup process is currently rather tedious, so I’ve created a template that does it all for you.
Download the template from: https://keasigmadelta.com/assets/GLTutorials/GLES3SDL 2-
Application.zip

To install the template, copy the downloaded file to: “<My Documents folder>\Visual Studio
2015\Templates\ProjectTemplates\Visual C++ Project” (see Figure 3).

“— v A « Visual Studic 2015 » Templates » ProjectTemplates » Visual C++ Project » v 0
P Links * MName Date modified
Local Settings %% GLES3SDL2 Application.zip 2017-01-25 10:12 ..
LockerHC-Data
MegaCloud
J’l Music

Figure 3: The template is installed by copying it to the project templates folder.

Create a New Project

Now we can create our project. In Visual Studio, select File => New => Project from the menu. Select
the “GLES3SDL2 Application” template, and call the project something like “GLTutoriall” (Figure 4).
After clicking “OK” it’1l create the new project.

https://github.com/google/angle
https://www.libsdl.org/download-2.0.php
https://keasigmadelta.com/assets/GLTutorials/GLES3SDL2-Application.zip
https://keasigmadelta.com/assets/GLTutorials/GLES3SDL2-Application.zip

MNew Project ? *

P Recent MET Framework 452 = Sort by: Default - i E= Search Installed Templates (Ctrl+E) P~
4 |nstalled ++ e .
I"j DirectX 11 and XAML App (Universal Windows 8.1) Visual C++ Type: Visual C++
4 Templates G’++ A blank project set up for OpenGLES 3 +
4 Visual C++ EE!! DLL (Universal Windows &.1) Visual C++ L2
4 Windows -
. +
Universal EE | Static Library (Universal Windows 8.1) Visual C++
b Windows 8
44
ATL Eg! Windows Runtime Component (Universal Windows 8.1) Visual C++
CLR =
i+
General [| Unit Test App (Universal Windows) Visual C++
MFC A
++
Test E’&! DLL (Universal Windows) Wisual C++
Win32 =
4
E;toss F’:Fform EE | Static Library (Universal Windows) Wisual C++
ensibility
T 4
N \g:?rd: ‘D'I;E! Windows Runtime Component (Universal Windows) Wisual C++
er Languages =
I+ Other Project T s
e ErTTRJEEt fypes D-j Makefile Project Visual C++
amples
b Online GLES35DL2 Application Visual C++
b
Click here to go enline and find templates.
MName: GLTutoriall
Location: chusersihans\documents\visual studio 2015\Projects - Browse...
il
Solution name: GLTuteriall Create directory for solution

[[] Create new Git repository

| OK | | Cancel

Figure 4: Create a new project using the GLES2SDL2 Application template.

Next, right-click on the new “GLTutoriall” project in the Solution Explorer (on the left) and select
build. With the first build it’ll set up SDL2 and Angle within the project. The Angle files are in a self-
extracting archive. It’1l pop up a window asking you where to put it (Figure 5). Simply click the
Extract button.

7-Zip self-extracting archive =

Extract to:

ocumentswisual studio 2015 Projects Gl Tutoral 1%E L Tutarial 1Y

Bdract Cancel

Figure 5: Click Extract to unpack the Angle files.

10

NOTE: Visual Studio’s editor may claim it can’t find “SDL.h” despite having installed the SDL2
package during the initial build. Simply close and reopen the project/solution (File => Close Solution,
followed by File => Recent Projects and Solutions => GLTutoriall.sIn).

Our First GLES3 & SDL2 Program

Right! Let’s get into actual coding, and write our first GLES3 + SDL program. In the solution explorer
(left column), open Main.cpp. You’ll find it under GLTutoriall => Source Files. Delete the existing
code, and start writing.

IMPORTANT: As mentioned in the How to Get the Most Out of These Tutorials section (on page 6),
it’s highly recommended that you type out the code by hand instead of copying and pasting. You’ll
learn/remember more if you do it that way.

Headers and Definitions

We’ll start by including the header files for libraries we’re using (SDL2 & OpenGL). Here’s the code:

// Basic OpenGL ES 3 + SDL2 template code

#include <SDL.h>

#include <SDL_opengles2.h>
#include <GLES3/gl3.h>
#include <cstdio>

#include <cstdlib>

Next, comes a few constants for the window’s dimensions:

const unsigned int DISP WIDTH = ;
const unsigned int DISP_HEIGHT = ;

SDL and OpenGL Initialization

Its time to set up SDL and create a window with an OpenGL ES 3 context. This is the start of your
program. With SDL, the main entry point is SDL_main(). This is optional, but worth using because it
hides the difference between main() & WinMain() (or whatever special main entry point an OS may
have). Anyway, SDL is initialized as follows (put this directly below the headers and definitions):

int SDL main(int argc, char *args[]) {

// The window
SDL Window *window = NULL;

// The OpenGL context
SDL GLContext context =NULL;

// Init SDL

11

if (SDL_Init(SDL_INIT VIDEO) < 0) {
SDL Log ("SDL could not initialize! SDL Error: %s\n", SDL_GetError()):;

return EXIT FAILURE;

// Setup the exit hook
atexit (SDL_Quit);

Notice that we’re only initializing SDL’s video subsystem in the SDL_Init() call:

if (SDL_Init(SDL_INIT VIDEO) < 0) {

SDL has other sub-systems such as audio and joystick input, but we’re not using any of them.
Next, we request OpenGL ES 3.0, and double-buffering:
// Request OpenGL ES 3.0

SDI, GL SetAttribute (SDL_GIL CONTEXT PROFILE MASK, SDL GI CONTEXT PROFILE ES);
SDL_GL_SetAttribute (SDL_GL_CONTEXT MAJOR VERSION, 3);
SDL_GL_SetAttribute (SDL_GL_CONTEXT MINOR VERSION, 0) ;

// Want double-buffering
SDL,_GL SetAttribute (SDL_GIL DOUBLEBUFFER, 1) ;

Double-buffering is a technique whereby we render to an invisible back-buffer and then flip the
buffers round to show it. Rendering directly to the screen runs the risk that partially rendered images
are shown. We definitely don’t want that because it’s ugly.

Opening the Window

With base initialization done, we can now open the window and set up the OpenGL context:
// Create the window

window = SDL CreateWindow ("GLES3+SDL2 Tutorial", SDL WINDOWPOS UNDEFINED,
SDL WINDOWPOS UNDEFINED, DISP WIDTH, DISP HEIGHT,
SDL,_WINDOW OPENGL | SDL_WINDOW_ SHOWN) ;
if ('window) {
SDL_ShowSimpleMessageBox (SDL MESSAGEBOX ERROR, "Error",
"Couldn't create the main window.", NULL) ;

return EXIT FATLURE;

context =SDL GL CreateContext (window) ;
if ('context) {

SDL_ShowSimpleMessageBox (SDL_MESSAGEBOX ERROR, "Error'",
"Couldn't create an OpenGL context.", NULL) ;

return EXIT FAILURE;

The code above has two steps; create the window (SDL_CreateWindow()), and create the OpenGL
context (SDL_GL_CreateContext()). Everything else is error handling. If you wish to use OpenGL
then it’s very important to pass SDL_CreateWindow() the SDL_WINDOW_OPENGL flag.
Otherwise the SDL_GL_CreateContext() call will fail.

Draw Something

Yes, it’s finally time to draw something! Okay, all we’re going to do this tutorial is clear the screen,
but it’1l still be an OpenGL draw operation nonetheless. Clearing to black is done as follows:

// Clear to black

glClearColor (, , ,),
glClear (G, COLOR BUFFER BIT) ;

// Update the window
SDL_GL_SwapWindow (window) ;

GL_COLOR_BUFFER_BIT tells gIClear() to only clear the screen/image (a.k.a., colour buffer).
A context may also have depth/z and stencil buffers, and you may wish to clear one or more of
them. The clear colour is, unsurprisingly, set by glClearColor(). Finally,
SDL_GL_SwapWindow() swaps the buffers so that our new image is displayed. We enabled
double-buffering (by passing SDL_GL_DOUBLEBUFFER to SDL_GL_SetAttribute()) so
rendering is performed on an invisible back buffer. So the front and back buffers need to be
swapped.

Wait Until the User Wants to Quit

Normally a “real” OpenGL program would have a main loop that does things like respond to events

and render animated graphics. Since this is a really basic program, all that’s needed is to wait for the

user to click the window’s close button. SDL makes this relatively easy with its event handling
functions:

// Wait for the user to quit

bool quit = false;
while ('quit) {
SDL_Event event;

13

if (SDL WaitEvent (&event) !'=0) {
if (event.type == SDL_ QUIT) {
// User wants to quit

quit = true;

return EXIT SUCCESS;

SDL_WaitEvent() stops the program until an event comes in. If the incoming event is an SDL_QUIT,

then the code above exits the while loop, and quits.

The Code in Full
Putting it all together, Main.cpp is:

// Basic OpenGL ES 3 + SDL2 template code

#include <SDL.h>

#include <SDL _opengles2.h>
#include <GLES3/gl3.h>
#include <cstdio>

#include <cstdlib>

const unsigned int DISP WIDTH = ;
const unsigned int DISP_HEIGHT = ;

int SDL main(int argc, char *args[]) {
// The window
SDL Window *window = NULL;

// The OpenGL context
SDL GLContext context =NULL;

// Init SDL
if (SDL Init(SDL INIT VIDEO) < 0) {

fprintf(stderr, "SDL could not initialize! SDL Error:

return ;

// Setup the exit hook

$s\n", SDL GetError()):;

14

atexit (SDL_Quit);

// Request OpenGL ES 3.0

SDL_GL_SetAttribute(SDL_GL_CONTEXT_PROFILE_MASK, SDL_GL_CONTEXT_PROFILE_ES);
SDL_GL_SetAttribute (SDL_GL_ CONTEXT MAJOR VERSION, 3);
SDL_GL_SetAttribute (SDL_GL_ CONTEXT MINOR VERSION, 0);

// Want double-buffering
SDL_GL_SetAttribute (SDL_GL DOUBLEBUFFER, 1) ;

// Create the window

window = SDL CreateWindow ("GLES3+SDL2 Tutorial'", SDL WINDOWPOS UNDEFINED,
SDL_WINDOWPOS UNDEFINED, DISP WIDTH, DISP HEIGHT,
SDL_WINDOW OPENGL | SDL WINDOW SHOWN) ;

if ('window) {
SDL_ShowSimpleMessageBox (SDL_MESSAGEBOX ERROR, "Error",
"Couldn't create the main window.", NULL) ;

return EXIT FAILURE;

context =SDL GL CreateContext (window) ;
if ('context) {

SDL_ShowSimpleMessageBox (SDL MESSAGEBOX ERROR, "Error',
"Couldn't create an OpenGL context.", NULL) ;

return EXIT FAILURE;

// Clear to black
glClearColor(0.0f, 0.0£f, 0.0£, 1.0£);

glClear (GL COLOR BUFFER BIT) ;

// Update the window
SDL_GL SwapWindow (window) ;

// Wait for the user to quit
bool quit = false;
while ('quit) {

SDL_Event event;

if (SDL WaitEvent (&event) '=0) {

15

if (event.type == SDL QUIT) {
// User wants to quit

quit = true;

return EXIT SUCCESS;
}

Running the Program

Save Main.cpp, then push F5 to build and run GLTutoriall (or right-click on the project and select
Debug => Start new instance). Visual Studio will compile the program and run it. If you typed out
everything correctly, you’ll be greeted with the following (Figure 6).

B " GLES3+5DL2 Tutorial

Figure 6: GLTutoriall running in all its minimalist glory.

16

Congratulations! You just wrote your first GLES3 + SDL2 program. Yes, it’s really boring, but it
covers the basics you’ll need to build more interesting stuff. The next tutorial covers rendering
something (a single triangle).

Exercises

You’ve learnt the basics by example, now it’s time to write some code on your own. Experimentation
is a great way to learn. So, see if you can modify the code to do the following:

1. Change the window’s size to 800x600

2. Change the clear colour to red, then green, blue, & yellow

17

Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

» HTML (Free /Available to everyone)

» PDF /TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

» Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

N\~
Ej Free-Ebooks.net

http://www.free-ebooks.net/

