ALT-Assembly Language Tutorial

', \,'\ ‘0' 'l.&,’? ’1




ASSEMBLY LANGUAGE TUTORIAL

Let’s Iearn in New I ook

BILAL AHMED SHAIK
8143786956 i



ABOUT THE TUTORIAL

Assembly Programming Tutorial

Assembly language is a low-level programming language for a computer, or other
programmable device specific to a particular computer architecture in contrast to most high-
level programming languages, which are generally portable across multiple systems.
Assembly language is converted into executable machine code by a utility program referred to
as anassembler like NASM, MASM etc.

Audience

This tutorial has been designed for software programmers with a need to understand the
Assembly programming language starting from scratch. This tutorial will give you enough
understanding on Assembly programming language from where you can take yourself at
higher level of expertise.

Prerequisites

Before proceeding with this tutorial you should have a basic understanding of Computer
Programming terminologies. A basic understanding of any of the programming languages will
help you in understanding the Assembly programming concepts and move fast on the learning
track.

BILAL AHMED SHAIK
8143786956



Copyright & Disclaimer Notice

©AIll the content and graphics on this tutorial are the property of Bilal Ahmed Shaik. Any content from

Bilal Ahmed Shaik or this tutorial may not be redistributed or reproduced in any way, shape, or form
without the written permission of Bilal Ahmed Shaik. Failure to do so is a violation of copyright laws.

This tutorial may contain inaccuracies or errors and Bilal Ahmed Shaik provides no guarantee regarding
the accuracy of the site or its contents including this tutorial. If you discover that the Bilal Ahmed Shaik
or this tutorial content contains some errors, please contact us at shaikbilalahmed @sify.com

BILAL AHMED SHAIK
8143786956



Table of Content

Assembly Programming Tutorial

Audience
Prerequisites

Copyright & Disclaimer Notice.

Assembly Introduction
What is Assembly Language?

Advantages of ASsembly LanguagE ..........coouiiiieieieiet e e e
Basic Features of PC Hardware ............ccooovvveieieeit vt e
The Binary NUMbBDEr SYSIEIM .......oveiiei e e e e e e e e
The Hexadecimal Number System ...

Binary Arithmetic ..

Addressing Data in Memory
Assembly Environment Setup .

Installing NASM..

Assembly Basrc Syntax
The ata SECHON . ... e e e e e e e e e e e e et e e
TE DS SO CHION ..ttt e e e e e et e ettt e e e e e eeee e eeeee e aeeeiae e

The text section..
Comments..

Assembly Language Statements
Syntax of Assembly Language Stateme nts..
The Hello World Program in Assembly....

Compiling and Linking an Assembly Program in NASM

Assembly Memory Segments

MEMOIY SEOMENLS ... ettt et ettt e e et e een e e e e e e s e

Assembly Registers

ProCESSOr REQISIEIS ... it et e e e e e
Data REGISIEIS ..oviuet ettt st st e et e et e e e e et et e e e ee e ee e e e ne e
POINEr REGISTEIS .. ... ettt e e e e et e e e e e e e e e
INAEX REQISIEIS ...t et e e e e e e e e e
CONrOl REQISIEIS ... .ot e ettt et et et e e ee e e e ae e
SEegMENT REGISIEIS ...t e

Example:.

Assembly System CaIIs
LinUX SYSTEM CallS.....ccoc ettt ettt e et e e ee e e e e n e

Example ..

Addressmg Modes

BILAL AHMED SHAIK
8143786956



RegiSter AAArESSING ... .covei e e ettt et e e et et et e e et e e e e e e e enens
IMMediate AJAIESSING ... .ccueueeie ettt e et
Direct Memory AdAreSSiNg ... ... oo et e
Direct-OffSEt AAAIreSSING .....ccoiveieiiii et e e e e e e e e een e
Indirect MemOry AdAreSSING.......cuu it it cr e e ee ettt e eet e e e e eeeeae e e e ees
The MOV INSTIUCTION ....ittt ittt et e e e e e e

EXAMPLE: ..ottt ettt e
Assembly Variables ...,
Allocating Storage Space for Initialized Data ...........c.cocoeveve i i
Allocating Storage Space for Uninitialized Data .........cccccoeevveiviiivienie i,
Multiple DefiNitiONS ... ..o e e e e e e e e
Multiple INItIAliZAIONS ...
Assembly Constants ..........oooevvviie i
The EQU DITECHIVE ..ottt et ettt et et et et et e e e re it e et et e e e e as

Example:.
The %aSS|gn D|rect|ve

The %defiNe DIFECHIVE ...ttt et et e e e e e e
Arithmetic INStruCtionS.........vevv v
SY N T AX ettt ettt ettt
EXAMPLE: ...ttt ettt ettt
The DEC INSITUCTION ... .ciiie et ettt e et et et e e e e e e et e een e e
SY NTAX oottt ettt ettt et
EXAMPLE: .....oiciiit ettt ettt ettt
The ADD and SUB INSTTUCHIONS ......cvvieeietee et et et et e et e e e e

SYNTAX:..
EXAMPLE

The MUL/IMUL Instructlon
EXAMPLE: .....ooicoit ettt et
The DIV/IDIV INSTIUCHONS . .....vv et e ie e et ettt e e vee e e eee s
SY NTAX ottt ettt ettt
EXAMPLE: .....oiiooes oottt ettt et
Logical INSTruCtionS .........ccoooeeiiiiier i e
The AND INSTIUCTION ... ittt et ettt et et e ee e ee e e ee e eeeee it e e s

Example:. .
The OR Instructlon

E XA . e e e

BILAL AHMED SHAIK
8143786956



The XOR INStIUCTION. ...c et e e e e e e e e et e e e et e e e
The TEST INSTIUCTION . .. ee ettt e e et e et e ettt et et e e e e e e e ae e aeeeaaaes
The NOT INSITUCTION . ... e eee e e et e e e e e e ettt et e e e e e e aee e aeaea

Assembly ConditioNS..........coovvue i e e e

The CMP INSITUCTION. ... e et
UNCONAItIoNAl JUMP .. ..ottt ettt e e e e e e e e e nea e
ConditioNal JUMP . .ooe e e e e e e

Example:.
Assembly Loops .....................................................................
Example:.

Assembly Numbers ................................................................
ASCII REPreSENIALION. .. ..ot e et e ee e e e
BCD REPIeSENtatioN ......ccvieeie ettt et e et et e

Example:.
Assembly Strlngs ...................................................................

SHING INSITUCTIONS ... e et

CMPS..
SCAS .
Repetltlon Preflxes

ASSEMDBIY ATTQYS w....cos oo e

Example:. .
Assembly PrOCEAUIES <.vcvvovevereeeeess oo seeeees e eeee s eees e
Syntax: ..

Example
Stacks Data Structure

Assembly Recursion ..............................................................
ASSEMDIY MACIOS.....ue i e e e e e
Example:.

Assembly File Management..f'.'.'.'.'.' e

File Descriptor...
File Pointer .. :
File Handllng System Calls

BILAL AHMED SHAIK
8143786956



Creating and Opening a File .........cooouiuiiii i e e
Opening an EXIStING File ..........ooooiiiiii e
Reading from @ File ... ..o e
WHHEING 10 @ FIIE 1o ve et e e e e e e et e e e e e e
(04 (01571 0o 1= T o 1= PRSP SRPRP
UPdating @ File ... ... e
a7

Example:.................

Memory Management .........cccceevevvveeeveneeenn
E XA e e e

75

75

75
76
76
76

.79

BILAL AHMED SHAIK
8143786956



CHAPTER

Assembly Introduction

What is Assembly Language?

ach personal computer has a microprocessor that manages the computers arithmetical, logical and
control activities.

Each family of processors has its own set of instructions for handling various operations like getting input from
keyboard, displaying information on screen and performing various other jobs. These set of instructions are called
'machine language instruction'.

Processor understands only machine language instructions which are strings of 1s and Os. However machine
language is too obscure and complex for using in software development. So the low level assembly language is
designed for a specific family of processors that represents various instructions in symbolic code and a more
understandable form.

Advantages of Assembly Language
An understanding of assembly language provides knowledge of:

e Interface of programs with OS, processor and BIOS;

e Representation of data in memory and other external devices;
e How processor accesses and executes instruction;

e How instructions accesses and process data;

e How a program access external devices.

Other advantages of using assembly language are:
e |trequires less memory and execution time;
e |tallows hardware-specific complexjobs in an easier way;,

e |tis suitable for time-critical jobs;

BILAL AHMED SHAIK
8143786956



e |tis mostsuitable for writing interrupt service routines and other memory resident programs.

Basic Features of PC Hardware

The main intemal hardware of a PC consists of the processor, memory and the registers. The registers are
processor components that hold data and address. To execute a program the system copies it from the external
device into the internal memory. The processor executes the program instructions.

The fundamental unit of computer storage is a bit; it could be on (1) or off (0). Agroup of nine related bits makes a
byte. Eight bits are used for data and the last one is used for parity. According to the rule of parity, number of bits
thatare on (1) in each byte should always be odd.

So the parity bit is used to make the number of bits in a byte odd. If the parity is even, the system assumes that
there had been a parity error (though rare) which might have caused due to hardware fault or electrical
disturbance.

The processor supports the following data sizes:
e Word: a 2-byte data item

e Doubleword: a 4-byte (32 bit) data item

e Quadword: an 8-byte (64 bit) data item

e Paragraph: a 16-byte (128 bit) area

e Kilobyte: 1024 bytes

Megabyte: 1,048,576 bytes

The Binary Number System

Every number system uses positional notation i.e., each position in which a digit is written has a different
positional value. Each position is power of the base, which is 2 for binary number system, and these powers begin
at0 and increase by 1.

The following table shows the positional values for an 8-bit binary number, where all bits are set on.
Bit value 1 1 1 1 1 1 1 1

Position value as a

128 64 32 16 8 4 2 1
power of base 2

Bit number 7 6 5 4 3 2 1 0

The value of a binary number is based on the presence of 1 bits and their positiongll value. So the value of the
given binarynumberis: 1 +2 +4 + 8 +16 + 32 + 64 + 128 = 255, which is same as 2"~ - 1.

The Hexadecimal Number System

Hexadecimal number system uses base 16. The digits range from 0 to 15. By convention, the letters A through F
is used to represent the hexadecimal digits corresponding to decimal values 10 through 15.

BILAL AHMED SHAIK
8143786956



Main use of hexadecimal numbers in computing is for abbreviating lengthy binary representations. Basically
hexadecimal number system represents a binary data by dividing each byte in half and expressing the value of
each half-byte. The following table provides the decimal, binary and hexadecimal equivalents:

Decimal number Binary representation Hexadecimal representation
0 0 0
1 1 1
2 10 2
3 11 3
4 100 4
5 101 5
6 110 6
7 111 7
8 1000 8
9 1001 9
10 1010 A
11 1011 B
12 1100 C
13 1101 D
14 1110 E
15 1111 F

To convert a binary number to its hexadecimal equivalent, break it into groups of 4 consecutive groups each,
starting from the right, and write those groups over the corresponding digits of the hexadecimal number.

Example: Binary number 1000 1100 1101 0001 is equivalent to hexadecimal - 8CD1
To convert a hexadecimal number to binary just write each hexadecimal digit into its 4-digit binary equivalent.
Example: Hexadecimal number FADS8 is equivalent to binary- 1111 1010 1101 1000

Binary Arithmetic

The following table illustrates four simple rules for binary addition:

@ (ii) (iii) (iv)
1
0 1 1 1
+0 +0 +1 +1
=0 =1 =10 =11

Rules (iii) and (iv) shows a carry of a 1-bitinto the next left position.

Example:

BILAL AHMED SHAIK
8143786956



Decimal Binary

60 00111100
+42 00101010
102 01100110

A negative binary value is expressed in two's complement notation. According to this rule, to convert a binary
number to its negative value is to reverse its bit values and add 1.

Example:

Number 53 00110101
Reverse the bits 11001010
Add 1 1

Number -53 11001011

To subtract one value from another, convert the number being subtracted to two's complement format and add
the numbers.

Example: Subtract 42 from 53

Number 53 00110101
Number 42 00101010
Reverse the bits of 42 11010101
Add 1 1

Number -42 11010110
53-42=11 00001011

Overflow of the last 1 bitis lost.

Addressing Data in Memory

The process through which the processor controls the execution of instructions is referred as the fetch-decode-
execute cycle, or the execution cycle. It consists of three continuous steps:

e Fetching the instruction from memory
e Decoding or identifying the instruction

e Executing the instruction

The processor may access one or more bytes of memory at a time. Let us consider a hexadecimal number

0725H. This number will require two bytes of memory. The high-order byte or most significant byte is 07 and the
low order byte is 25.

The processor stores data in reverse-byte sequence i.e., the low-order byte is stored in low memory address and

high-order byte in high memory address. So if processor brings the value 0725H from register to memory, it will
transfer 25 first to the lower memory address and 07 to the next memory address.

BILAL AHMED SHAIK
8143786956



Register | 07 | 25 ]

e,

Memory | 25 | 07 |

X x+1

x: memory address

When the processor gets the numeric data from memory to register, it again reverses the bytes. There are two
kinds of memory addresses:

e An absolute address - a direct reference of specific location.

e The segmentaddress (or offset) - starting address of a memory segment with the offset value

BILAL AHMED SHAIK
8143786956



CHAPTER

Assembly Environment Setup

ssembly language is dependent upon the instruction set and the architecture of the processor. In this

tutorial, we focus on Intel 32 processors like Pentium. To follow this tutorial, you will need:
e AnIBM PC or any equivalent compatible computer

e AcopyofLinuxoperating system

e Acopyof NASMassembler program

There are many good assembler programs, like:

e  Microsoft Assembler (MAS M)

e Borland Turbo Assembler (TASM)

e The GNU assembler (GAS)

We will use the NASM assembler, as itis:

e Free. You can download it from various web sources.

e Well documented and you will get lots of information on net.
e Could be used on both Linuxand Windows

Installing NASM

If you select "Development Tools" while installed Linux, you may NASM installed along with the Linux operating
system and you do not need to download and install it separately. For checking whether you already have NASM
installed, take the following steps:

Open a Linuxterminal.
Type whereis nasm and press ENTER.

e Ifitis alreadyinstalled then a line like, nasm: /usr/bin/nasm appears. Otherwise, you will see justnasm:, then
you need to install NASM.

To install NASM take the following steps:

BILAL AHMED SHAIK
8143786956



Check The netwide assembler (NASM) website for the latest version.

Download the Linux source archive nasm-XXX. ta .gz, where X.XX is the NASM version number in the
archive.

Unpack the archive into a directory, which creates a subdirectory nasm-X. XX.

cd to nasm-X. XX and type ./configure . This shell script will find the best C compiler to use and set up
Makefiles accordingly.

Type make to build the nasm and ndisasm binaries.

Type make install to install nasm and ndisasm in /usr/local/bin and to install the man pages.

This should install NASM on your system. Alternatively, you can use an RPM distribution for the Fedora Linux.
This version is simpler to install, just double-click the RPMfile.

BILAL AHMED SHAIK
8143786956


http://www.nasm.us/

CHAPTER

Assembly Basic Syntax

n assembly program can be divided into three sections:

e The data section
e The bss section

e The text section

The data Section

The data section is used for declaring initialized data or constants. This data does not change at runtime. You
can declare various constant values, file names or buffer size etc. in this section.

The syntax for declaring data section is:

section .data

The bss Section

The bss section is used for declaring variables. The syntax for declaring bss section is:

section .bss

The text section

The text section is used for keeping the actual code. This section must begin with the declarationglobal main,
which tells the kemel where the program execution begins.

The syntaxfor declaring text section is:
section .text

global main
main:

Comments

Assembly language comment begins with a semicolon (;). It may contain any printable character including blank.
It can appear on a line by itself, like:

BILAL AHMED SHAIK
8143786956



; This program displays a message on screen

or, on the same line along with an instruction, like:

add eax ,ebx ; adds ebx to eax

Assembly Language Statements

Assembly language programs consist of three types of statements:
e Executable instructions or instructions
e Assembler directives or pseudo-ops

. Macros

The executable instructions or simplyinstructions tell the processor what to do. Each instruction consists of
an operation code (opcode). Each executable instruction generates one machine language instruction.

The assembler directives or pseudo-ops tell the assembler about the various aspects of the assembly process.
These are non-executable and do not generate machine language instructions.

Macros are basically a text substitution mechanism.

Syntax of Assembly Language Statements

Assembly language statements are entered one statement per line. Each statement follows the following format:
[label] mnemonic [operands] [; comment]

The fields in the square brackets are optional. A basic instruction has two parts, the first one is the name of the
instruction (or the mnemonic) which is to be executed, and the second are the operands or the parameters of the
command.

Following are some examples of typical assembly language statements:

INC COUNT ; Increment the memory variable COUNT
MOV TOTAL, 48 ; Transfer the value 48 in the
; memory variable TOTAL
ADD AH, BH ; Add the content of the
; BH register into the AH register
AND MASK1l, 128 ; Perform AND operation on the
; variable MASK1l and 128
ADD MARKS, 10 ; Add 10 to the variable MARKS
MOV AL, 10 ; Transfer the value 10 to the AL register

The Hello World Program in Assembly
The following assembly language code displays the string 'Hello World' on the screen:

section .text

global main ;must be declared for linker (1d)
main: ;tells linker entry point

mov edx,len ;message length

mov ecx,msg ;message to write

mov ebx, 1 ;file descriptor (stdout)

mov eax,4 ;system call number (sys write)

int 0x80 ;call kernel
BILAL AHMED SHAIK

8143786956



Thank You for previewing this eBook

You can read the full version of this eBook in different formats:

» HTML (Free /Available to everyone)

» PDF /TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

» Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

@
Free-eBooks


http://www.free-ebooks.net/

