
 

 

 

A Practical Introduction to 
 

APL 1 
& 

APL 2 
 

 

by  

 

Graeme Donald Robertson 

 
 

 

 

  . . TRAINING THAT WORKS . . . 

 
 

 

Date:    .................................. 

 

Place:    ................................... 
 

 

Instructor:  ................................................................................... 

 

Student(s):   ................................................................................... 

 

....................................................................................................................... 

 

....................................................................................................................... 

 

....................................................................................................................... 

 

....................................................................................................................... 

 

....................................................................................................................... 



 A Practical Introduction to APL 1 & APL 2  

 
 

 2  

 

 
 

ROBERTSON (Publishing) 

15 Little Basing,  Old Basing, 

Basingstoke, RG24 8AX, UK. 

 

 

Copyright © Graeme Donald Robertson 2004-2008 

 

This publication may be used, reproduced, stored in a  

retrieval system, or transmitted in any form or by any  

means, electronic, mechanical, photocopying, recording  

or otherwise, without the permission of the publisher. 

 

This document is distributed subject to the condition that 

 it shall not, by way of trade or otherwise, be sold or hired  

out without the publisher’s prior consent.  It may however 

be used in APL classes and circulated  in any form of  

binding or cover with a similar condition, including this  

condition, being imposed on the subsequent owner.   

 

First edition published March 2004 as APL1&2.PDF 

Second edition published September 2004 as APL1_2.PDF 
Third edition published January 2008 as APL1&2.PDF 

 

 

ISBN  0 9524167 1 9 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Conduct of this 2 day course: 

 

After short introductions, the student group is invited to divide up into pairs.   

Each pair works on one computer/terminal for the duration of the course. 

Each pair is given the first lesson and asked to work through it on their computer at their own pace. 

Pairs are encouraged to help each other with new concepts and difficulties as they arise and to experiment on the 

computer with any ideas which they think they can express in APL statements.   

Tuition is given when problems cannot be resolved by the pair.  Questions may be answered directly on matters of 

fact, or indirectly by way of a suggestion as to how the problem might be tackled. 

Each day covers about 7 lessons, depending upon the pace of each pair.  

There is no pressure to complete all lessons (remaining notes are given out at the end of the course). 

At the discretion of the tutor, lessons may be skipped or assigned for private study after the course has ended. 

Short synopses are given (with an overhead projector or white board) at suitable intervals throughout the course to the 

group as a whole. 



 A Practical Introduction to APL 1 & APL 2  

 
 

 3  

 

A Practical Introduction to 
 

APL 1&2 
 

APL is the only language to have been 200 years in the debugging. 

Ken Iverson 

 

Day 1: First Generation – APL 1 

 

  APL 1 - Core APL 
Session 1 

    APL Character Set 

    APL Keyboard 

    Primitive Functions 

    Simple Arrays 

    Assignment of Variables 

    Indexing & Special Syntax 

    Error Messages 
Session 2 

User-Defined Functions 

    Editing Functions 

    Local & Global Variables 

Order of Execution of Functions 

    System Commands 

    APL Idioms 

 
...learning by practice, by induction, and by heuristic methods... 

...pragmatic teaching by encouraging experiment and by individual tutorial. 

Ken Iverson 

 



 A Practical Introduction to APL 1 & APL 2  

 
 

 4  

L E S S O N  0 
 

 

Why Learn APL? 
 

APL is a high-level, general-purpose, intuitive programming language which is designed to be 

easy on the programmer even if consequently hard on the computer - through power, not 

inefficiency.   

 

APL has its own special character set of around 200 alphabetic characters and symbols.  Although 

the APL symbols might appear illegible and unintelligible, each individual symbol performs a 

specific task making programs very concise.  APL is A Programming Language which is 

essentially simple and easy to learn, and APL is interactive making it possible to experiment with 

different ideas while developing solutions. 

 

Getting to Know Your APL Keyboard 
 

Your computer should be set up already so that an APL session is visible and has the focus.  

Typing on your keyboard should cause characters to be displayed on your screen.  Try typing 

something.  When you come across a new symbol, or key combination, write it on the supplied 

blank keyboard.  This will help you quickly to become familiar with the new APL key layout. 

 

Symbols which require the Shift key to be pressed should be written in the upper left hand corner 

of the corresponding key cap on the supplied blank keyboard chart.  Symbols which require the 

Ctrl and Shift keys to be pressed should be written in the upper right hand corner of the 

corresponding key on the chart.  Symbols which require the Alt key to be pressed should be 

written on the front of the corresponding key, as shown below.  (Beware of Ctrl keys on a 

mainframe.) 

 

• Type the numbers 0 to 9 on your keyboard and write them in the lower left hand corner of the 

corresponding key on your keyboard chart.  Type in the upper case letters A to Z on your 

keyboard and write them in the appropriate positions on the keyboard chart.   

 

• Find the symbols + and - on the keyboard and write them on your chart.  Find the symbols × 

and ÷ on the keyboard and write them on your chart.  Use the backspace key to rub out the 

typing.  Put that key on your chart too. 

 

• In APL each expression which is typed into the APL session is executed when the Enter key is 

pressed.  In mainframe APL2 the key which is used to enter expressions is the right Ctrl key, 

and possibly also the numeric pad Enter key.  Mark the appropriate key on your chart. 

 
• Ask your tutor for LESSON 1. 



 A Practical Introduction to APL 1 & APL 2  

 
 

 5  

 



 A Practical Introduction to APL 1 & APL 2  

 
 

 6  

L E S S O N  1 
 

 

Simple Arithmetic Expressions 
 

Go at your own pace.  Experiment.  Try to work it out.  Think.  Talk about it. 

 

• Use APL to add any two numbers together.  Check the result.  For example, type 

 

      65.35 + 35.65 
101 

Hint: Hit the Enter key when you are ready to execute the line containing the cursor. 

 

Notice how, in immediate execution mode, APL indents the cursor 6 spaces to indicate that it is 

ready to accept the next line of user input.  Everything which has been input by the user is 

indented by 6 spaces, and is coloured green in mainframe APL2.  Output from the computer 

starts at the left hand margin and is coloured red, as are error lines.  

 

• Type the following two lines into your session and explain the results. 

 

      14 - 9 
5 
      - 7 
¯7 

 

Notice the distinction between the negate function (-) and the negative sign, or high minus 

symbol, (¯), which is an intrinsic part of a number, like the decimal point. 

 

Symbols such as - and + can be used either with a right argument (which is called the monadic 

or prefix case) or with a left and right argument (which is called the dyadic or infix case).  Thus 

the hyphen symbol can be used monadically to mean negate or dyadically to mean minus, or 

subtract.  Write the new high minus symbol on your keyboard chart. 

 

The plus and minus signs were introduced by the German mathematician Johann Widmann in 

1489 to signify addition and subtraction.  Dyadic deployment of the symbols is now familiar to 

everyone. 

 

APL has many such powerful primitive functions which allow complex computations to be done 

very easily.  Primitive functions follow the principle of one symbol per mathematical operation. 

 

• Experiment to see if you can deduce the monadic and dyadic meanings of the symbols 

 × ÷ | — ˜ * µ ! both by applying simple numeric arguments, and by inference from 

the form of the symbol itself. 

 

The times sign was introduced by the English mathematician who invented the slide rule; 

William Oughtred (1575 - 1660).  Its use to signify multiplication is now familiar to everyone 

who has been exposed to the language of elementary algebra.  Most computer languages use * to 

indicate multiplication.  Algebraists use a variety of alternative ways to indicate multiplication: 

a×b or a.b or ab.  APL consistently  uses ×.  "APL is the only [computer] language to have been 

two hundred years in the debugging," says Iverson. 



 A Practical Introduction to APL 1 & APL 2  

 
 

 7  

APL is derived from mathematical notation.  It did not appear from the standard evolutionary 

origins of most other computer languages.  APL crystallized from an unconstrained theoretical 

notation (Iverson notation) when it was realized that it could be executed on a computer.  "I 

wasn't trying to design or implement a language for a machine," confessed Iverson. 

 

The monadic meanings of × ÷ | — ˜ * µ and ! are direction, reciprocal, magnitude, 

ceiling, floor, exponential, natural logarithm and factorial respectively, and dyadic meanings 

multiply, divide, residue, maximum, minimum, power, logarithm and binomial respectively. 

 

• Investigate the monadic meaning of +    Experiment with any suggestive arguments!     ;-) 

 

The result of one expression can be used as the argument to another function.   

 

• Try some compound expressions such as 

 

      3 × 4 + 6 
30 
 

and 

 

      (3 × 4) + 6 
18 
 

Hence explain the result of the expression 

 

      14 - 6 - 5 - 3 - 7 
17 
 

Beyond BIDMAS.   Remember BIDMAS (or BODMAS)? It tells you the order of precedence in 

simple arithmetic expressions – brackets first, then indices (or of), division, multiplication, 

addition and finally subtraction.   APL, on the other hand, does not assume any special order of 

precedence between functions.  Execution simply proceeds from right to left unless you use 

parentheses (round brackets) to control the order of execution.  All APL functions have equal 

priority.  This basic “right-to-left” grammatical rule applies to dyadic functions and monadic 

functions alike in APL. (It’s a bit like the rule in English that the object of a sentence comes after 

the verb.) 

 

Rule 1: The right argument of any function, monadic or dyadic, is the result of the entire 

expression immediately to its right. 

 

Some functions take boolean arguments and return boolean results. 

 

• Reading 1 as true and 0 as false, verify the truth values of these expressions. 

 

      1 Ÿ 1 
1 
      1 ^ (0 ^ 1) Ÿ 1 Ÿ 0 
1 
      ~ 0 Ÿ ~ 0 

0 



 A Practical Introduction to APL 1 & APL 2  

 
 

 8  

These invoke the simple logical functions: and (^), or (Ÿ) and not (~).  

• Some functions take numeric arguments and return boolean results.  Verify the results of 

      20.5 = 41 ÷ 2 
1 
      101 < 200 - 100 
0 
      27.3 > 39.31  
0 
 

These introduce binary relational functions: equals (=), less-than (<) and greater-than (>).   

 

• Trigonometric functions are implemented via the dyadic circle function.  A left argument of 1 

returns the sine of the right argument.  Assess the result of 

 

      1 ± 3.14159 
0.000002654 
 

knowing that Sin(π) is zero.  A left argument of 2 returns the cosine, 3 returns the tangent. 

 

The left argument of the circle function may be an integer between 12 and -12 representing 

various standard pythagorean, trigonometric, hyperbolic and complex number functions.   

 

• Explore a few examples.  Find the meaning of the monadic circle function. 

 

• Type the following line into your session and execute it a few times.   

 

      ? 6 
5 
 

What do you think the results indicate about the meaning of roll (?)? ☺ 

 

• Try some more adventurous examples of the application of Rule 1. 

 
      ˜0.5+3.23 
3 
      —¯0.5+3.23 
3 
      ˜¯3.5—¯8.2 
4 
      3.2|¯4.3 
2.1 
      ((?5)ˆ?8)Ÿ(?5)‰?8       
1 
      (~1Š0‹1)=1ˆ0.2ˆ3ˆ4 
0 
      (2!6)=(!6)÷(!2)×!4 

1 
      ((3×4)=*(µ3)+µ4)^(3÷4)=*(µ3)-µ4 
1 
• Ask your tutor for LESSON 2. 



 A Practical Introduction to APL 1 & APL 2  

 
 

 9  

 



 A Practical Introduction to APL 1 & APL 2  

 
 

 10  

L E S S O N  2 
 

 

Names, Lists & Literals 
 

Numbers and results of expressions can be assigned to names.  The left assignment arrow („) may 

be read as gets or is-assigned or simply is. 

 

• Enter the following statements (or sentences), noting that * means power and × means times, 

 

      INTEREST „ 0.09 
      YEARS „ 6 
      VALUE„500×(1+INTEREST)*YEARS 
 

• Type in the name of a variable and hit the Enter key to display the contents of the variable in 

the session.   

 
      VALUE 
838.6 
 

Generalized Scalar Functions.  Some functions that take single numbers (scalar) arguments 

have well defined behaviour when the arguments are extended to lists of numbers (vector). 

 

• Execute the line 

 

      1 2 3 + 4 6 8 
5 8 11 
 

and explain the result. 

 

Addition of vectors is not a new concept.  Newtonian mechanics (c. 1687) employs 3 element 

vectors to describe positions, velocities and forces in 3D space.  Addition of forces may be 

represented 

by lines and parallelograms, as below.  The sum is calculated by vector addition, using the plus 

sign, as above.   

N-dimensional vector spaces (containing N-element vectors) are now employed routinely in many 

branches of pure and applied mathematics.  Indeed the concept of a vector space is one of the 

principal unifying concepts in the whole of mathematics (see Hilbert Space in Wikipedia). 

 

"The use of a programming language in which elementary operations are extended systematically 

to arrays provides a wealth of useful identities," says Dr Kenneth Iverson in his book A 

Programming Language, Wiley 1962. 

 



 A Practical Introduction to APL 1 & APL 2  

 
 

 11  

APL adopts this element-by-element approach to vector addition and generalises it to many 

standard mathematical functions, taking dyadic plus and monadic negate as role models, or 

templates. 

 

• Check the results of 

 

      - 3 4 5 
¯3 ¯4 ¯5 
      - 3 4 ¯5 4 6 5.0 ¯8.567 
¯3 ¯4 5 ¯4 ¯6 ¯5 8.567 
      1 2 3 × 2 ¯2 2 
2 ¯4 6 
      45 ¯3 2 2.33 + 99 7 4 0.4 
144 4 6 2.73 
 

• Explore other expressions, using lists of numbers as arguments to the primitive scalar 

functions represented by symbols + - × ÷ | — ˜ * µ ± !  

 

Scalar Extension.  If one of the arguments of a scalar dyadic function is a scalar and the other is 

a vector (or list) then the scalar is automatically extended to have the same length as the vector. 

 

• Enter 

 

      1 ± .1 .2 .3 
0.09983 0.1987 0.2955 
 

• Compare with  

 

      1 1 1 ± .1 .2 .3 
0.09983 0.1987 0.2955 
 

and 

 

      1 2 3 ± .1 .2 .3 
0.09983 0.9801 0.3093 
 

Otherwise, if the arguments have incompatible lengths then a LENGTH ERROR is reported.   

 

• Try to execute the following line. 

 

      1 2 ± .1 .2 .3 
 

Literals.  Variables can be assigned to lists of literal characters as well as to lists of numbers.  

Character strings have to be enclosed inside APL quotes in order to distinguish literal characters 

from defined names or simple numerics. 

 

• Enter your name and web address, e.g. 

 

      NAME„'DEBBIE ROBERTSON' 
      ADDRESS„'APL4.NET' 



 A Practical Introduction to APL 1 & APL 2  

 
 

 12  

The dyadic structural functions catenate (,) take (†) and drop (‡), and the monadic structural 

function reverse (²), can be used on any list of numbers or characters to produce a new related 

list. 

 

• Try 

 

      ²NAME 

NOSTREBOR EIBBED 
      7†NAME 
DEBBIE  
      E„(6†NAME),'@',ADDRESS 
      E 
DEBBIE@APL4.NET 
 

• Monadic use of Greek letter rho (function shape) returns the number of elements in the vector 

NAME.  Check the result of  

 

      ½NAME 
16 
 

• Dyadic rho (reshape) returns the right argument reshaped to have exactly the number of 

elements specified by the left argument.  Try 

 

      4½ADDRESS 
APL4 
      40½ADDRESS 
APL4.NETAPL4.NETAPL4.NETAPL4.NETAPL4.NET 
      ²50½NAME,' ' 
NOSTREBOR EIBBED NOSTREBOR EIBBED NOSTREBOR EIBBED 
 

The shape of a vector is the number of elements in the list. 

 

• Type 

 

      ½NUMS„56 87 75 80 79 86 84 90 
8 
      ½CHARS„'56 87 75 80 79 86 84 90' 
23 
 

Literal digits can be converted into numbers using the very powerful execute (–) function (which 

is said to make APL ‘self-conscious’) and numbers can be converted into characters using the 

very useful format (•) function. 

 

• Explain the results of 

 

      ½•NUMS 
23 
      CHARS=•NUMS 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
       



 A Practical Introduction to APL 1 & APL 2  

 
 

 13  

      ½–CHARS 
8 
      NUMS=–CHARS 
1 1 1 1 1 1 1 1 
      CHARS,•NUMS 
56 87 75 80 79 86 84 9056 87 75 80 79 86 84 90 
       
      –(3×5)½'NUMSª' 
56 87 75 80 79 86 84 90 
56 87 75 80 79 86 84 90 
56 87 75 80 79 86 84 90 
 

The diamond symbol (ª) is not a function. It is a statement separator.  You might not be able to 

find it on your APL2 mainframe keyboard.  However, diamond is an example of an overstruck 

character – from the days when space for characters was scarce.  A diamond can be input using 

the three consecutive symbols <_> where _ is the printable backspace.  This requires that you 

first type the command 

 

      )PBS ON 
 

in APL2, or switch to replace mode via the Insert key in Dyalog APL. 

 

Interval (¼) can be used to generate any uniformly spaced range of numbers. 

 

The monadic meaning of the iota character (¼) is a function called interval or index generator.  It 

takes a scalar argument and returns a vector result.   

 

• Try 

 

      ¼9 
1 2 3 4 5 6 7 8 9 
      ¼19 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 
      ¯1+(¼19)÷10 
¯0.9 ¯0.8 ¯0.7 ¯0.6 ¯0.5 ¯0.4 ¯0.3 ¯0.2 ¯0.1 0 0.1 0.2 0.3 0.4 0.
5  
      0.6 0.7 0.8 0.9 
 
• Experiment with examples like 

 

       ¯0.3×8-¼15 
¯2.1 ¯1.8 ¯1.5 ¯1.2 ¯0.9 ¯0.6 ¯0.3 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 
 
• Now try 

 
      ¯1+(¼99)÷50 
or 

      ¯1+(¼9999)÷5000 
 

 



 A Practical Introduction to APL 1 & APL 2  

 
 

 14  

• Use the appropriate keystroke (usually Ctrl+C on a mainframe keyboard or Ctrl+Break on a 

PC) to interrupt execution of lengthy or verbose operations.  Write this important key 

combination on your keyboard chart.  Learn to interrupt without compunction.  Waiting for a 

rogue function to finish may be very expensive on a mainframe.  You control the computer 

now. 

 

APL primitive functions appear atomic in the sense that they never stop half way through.  They 

either finish completely or appear not to have started at all.  Therefore breaking an APL process 

always leaves the processing stack at a definite given point in an APL program. 

 

APL idioms are commonly used combinations of tokens.  They are phrases that are immediately 

recognised by APL programmers when reading APL code.  A simple example of an idiom is 

 

      ¼½NUMS 
1 2 3 4 5 6 7 8 
 

which returns a count of the elements in the vector NUMS. 

 

• Propose a use for this idiom: 

 

      (1‡NUMS)-(¯1‡NUMS) 
31 ¯12 5 ¯1 7 ¯2 6 
 

Note the occasional judicious use of redundant parentheses to enhance readability.   

 

• Experiment with dyadic functions ½ † and ‡ using scalar (single) integer left arguments 

and vector (list) numeric (or character) right arguments.  Note, in particular, the shape of the 

arguments and the shape of the results. 

 

• Write an expression which rounds a number of pennies to the nearest 12p.  Andrew, James, 

Charles and Marcus each have a building society account: these contain £5,081.09, 

£11,954.55, £812.97 and £6,241.00 respectively.  Each account has a different annual interest 

rate: 4.1%, 3.5%, 2.6% and 3.25%.  Write an expression which returns the interest on each 

account.  Write another expression which returns how much each person could have at the 

end of ten years of saving, to the nearest 12p? 

 



 A Practical Introduction to APL 1 & APL 2  

 
 

 15  

L E S S O N  3 
 

 

Indexing Non-Scalar Arrays 
 

In a simple and intuitive manner, square brackets [ ] are used to select items from a list. 

 

• Enter 

 

      NUMS[3 2] 
75 87 
      (²¼99)[NUMS] 
44 13 25 20 21 14 16 10 
      (33 44 55 66)[3 2 3 3 1] 
55 44 55 55 33 
      'scarlet'[1 6 2 4 6 7] 
secret 
 

The shape of the result is the shape of the index.  If no index is included within the brackets 

(elided index) then the whole vector is returned.  e.g. 

 

      NUMS[] 
87 75 80 79 86 84 90 
 

• Use bracket indexing to select the smallest and largest elements from the vector 

 

      A „ ? 100 ½ 1000 
 

Hint: Monadic grade-up (“), applied to argument A returns the permutation vector which would 

sort A in ascending order. 

 

Matrices.  We have generalised the arguments of functions from scalars to vectors, or lists.  Now 

we generalise further to matrices, or tables. 

 

When the concept of a matrix of numbers is first encountered in mathematics it can appear quite 

forbidding, but they have many uses.  For example, they form the bases of representations of 

continuous groups which have many deep applications in science.  We here consider a matrix 

simply as a rectangular table of numbers or characters.  

 

In order to create a vector we may use the dyadic reshape function (½), with a single numeric left 

argument, to produce a list of that length containing elements taken consecutively from the right 

argument.  In order to create a matrix we may use the reshape function with a two element 

numeric vector left argument to produce a table which has that number of rows and columns. 

 

• Examine the displayed output from 

 

      3 4 ½ 999 
999 999 999 999 
999 999 999 999 
999 999 999 999 



 A Practical Introduction to APL 1 & APL 2  

 
 

 16  

      5 5 ½ ¼ 25 
 1  2  3  4  5 
 6  7  8  9 10 
11 12 13 14 15 
16 17 18 19 20 
21 22 23 24 25 
      2 13 ½ 'ABCDEFGHIJKLMNOPQRSTUVWXYZ' 
ABCDEFGHIJKLM 
NOPQRSTUVWXYZ 
 

• Create a character matrix called MONTHS that has 12 rows and 9 columns formed from the 

carefully spaced character string   

 

      'JANUARY  FEBRUARY MARCH    APRIL .. DECEMBER '   

 

• Use bracket indexing to select rows 3 and 4 and columns 1 and 2. 

 

      MONTHS[ 3 4 ; 1 2 ] 
MA 
AP 

Note the semicolon to separate dimensions.   

 

In APL, there are often (always?) many ways to accomplish the same task (although some 

solutions are manifestly more elegant than others).   

 

• Use take and/or drop with 2 element left arguments to produce from MONTHS the selection: 

 

      MONTHS[ 3 4 9 ; 5 1 2 ] 
HMA 
LAP 
ESE 
 

• From the result of 

 

    (12†0 0 1)šMONTHS 
MARCH 
 

deduce the meaning of compress-first (š) with boolean left argument.  How could you use this 

function and compress (/) to make the above selections?  Why was compress renamed replicate 

when the left argument was generalized to include integers rather than just booleans?   

 

Suggestion: Look up replicate (/) in your reference manual or help file.   

 

• Create a variable called SALES which has 12 rows and 3 columns and is filled with random 

numbers between 1 and 1000. 

 

• Select the first row of SALES (and all the columns - by eliding the columns entry). 

 

      SALES[1;] 
935 384 520 



 A Practical Introduction to APL 1 & APL 2  

 
 

 17  

• Select the third and first column (and all the rows - by eliding the rows entry). 

 

      SALES[;3 1] 
520 935 
 54 831 
  8 530 
      · 
      · 
      · 
 

Structure functions.  The primitive selection functions, which were used for manipulating lists, 

all generalise to matrices.  We have already seen take (†) and drop (‡) applied to matrices.  

There are other primitive functions that change the structure of their arguments.   

 

• Experiment with monadic transpose (³) on SALES and other matrices. 

 

      ³SALES 
935 831 530 384 687 847 654 911  48 633 366 723 
384  35 672  67 589 527 416 763 737 757 248 754 
520  54   8 418 931  92 702 263 329 992 983 652 
 

• Experiment with reverse (²) on SALES and other vectors and matrices. 

 

      ²SALES 
      ³²³SALES 
 

• Look up take, drop and reverse-first (´) in your reference manual or help file.  Become 

familiar with your sources of reference. 

 

• Make a report. 

 

      REPORT„MONTHS,•SALES 
 

• Explain the expand function (\) and use it to double the width of the report. 

 

      ((2×¯1†½ REPORT)½1 0)\REPORT 
J A N U A R Y     9 3 5   3 8 4   5 2 0  
F E B R U A R Y   8 3 1     3 5     5 4  
M A R C H         5 3 0   6 7 2       8  
A P R I L         3 8 4     6 7   4 1 8  
M A Y             6 8 7   5 8 9   9 3 1  
J U N E           8 4 7   5 2 7     9 2  
J U L Y           6 5 4   4 1 6   7 0 2  
A U G U S T       9 1 1   7 6 3   2 6 3  
S E P T E M B E R   4 8   7 3 7   3 2 9  
O C T O B E R     6 3 3   7 5 7   9 9 2  
N O V E M B E R   3 6 6   2 4 8   9 8 3  
D E C E M B E R   7 2 3   7 5 4   6 5 2  

 
 

 



Thank You for previewing this eBook 

You can read the full version of this eBook in different formats: 

 HTML (Free /Available to everyone) 

 

 PDF / TXT (Available to V.I.P. members. Free Standard members can 

access up to 5 PDF/TXT eBooks per month each month) 

 

 Epub & Mobipocket (Exclusive to V.I.P. members) 

To download this full book, simply select the format you desire below 

 

 

 

http://www.free-ebooks.net/

