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1. Introduction    

Colloquially speaking, turbulence in any language means disorderly, incomprehensible, and 
of course, unpredictable movement. Consequently, we encounter expressions that employ 
the word turbulence in social and economic contexts; in aviation whenever there are 
abnormalities in the air, and even in psychology and the behavioural sciences in reference to 
turbulent conduct, or a turbulent life, in the sense of a dissolute existence. Thus has the 
word turbulence become associated with chaos, unpredictability, high energy, 
uncontrollable movement: dissipation. All of the foregoing concepts have their source in the 
world of hydrodynamics, or fluid mechanics. 
In fluid mechanics, turbulence refers to disturbance in a flow, which under other 
circumstances would be ordered, and as such would be laminar. These disturbances exert an 
effect on the flow itself, as well as on the elements it contains, or which are submerged in it. 
The process that is taking place in the flow in question is also affected. As a result, they 
possess beneficial properties in some fields, and harmful ones in others. For example, 
turbulence improves processes in which mixing, heat exchange, etc., are involved. However, 
it demands greater energy from pumps and fans, reduces turbine efficiency and makes noise 
in valves and gives rise to vibrations and instabilities in pipes, and other elements.   
The study of turbulence and its related effects is a mental process; one that begins with great 
frustration and goes on to destroy heretofore accepted theories and assumptions, finally 
ending up in irremediable chaos. “I am an old man now, and when I die and go to heaven, 
there are two matters on which I hope for enlightenment. One is the quantum 
electrodynamics, and the other is the turbulent motion of fluids. An about the former I am 
rather optimistic” (Attributed to Horace Lamb). 
Nonetheless, some progress has been made in turbulence knowledge, modelling and 
prediction. (Kolmogorov, 1941). This chapter will deal briefly with these advances, as well 
as with the effects of turbulence on practical applications. In this sense, reference will be 
made to noise effects and modelling, as well as to flow vibration and instabilities provoked 
by turbulence. (Gavilán 2008, Gavilán 2009). 

2. Turbulence. 

Of itself, turbulence is a concept that points to unpredictability and chaos. For our purposes, 
we will deal with this concept as it applies to fluid mechanics. Therefore, we will be dealing 
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with turbulent flow. Throughout what follows, the terms turbulence and turbulent flow will 
be understood as synonymous. Some texts treat the terms turbulence and vortex as 
analogous, however, this seems to be rather simplistic. For the purposes of this work, it 
seems best to take the concept of turbulence in its broadest sense possible. 
Historically, fluid mechanics has been treated in two different ways, namely, in accordance 

with the Euler approach, or pursuant to the Lagrange approach. The Eulerian method is 

static, given that upon fixing a point, fluid variations are determined on the effect they have 

on this point at any given time. On the other hand, the Lagrangian method is dynamic, 

given that it follows the fluid. In this way, variations in the properties of the fluid in 

question are observed and/or calculated by following a particle at every single moment 

over a period of time. 

The Eulerian method is the one most employed, above all, in recent times, by means of 

numerical methods, such as that of finite elements, infinites, finite volumes, etc. 

Notwithstanding, there is great interest in the Lagrangian method or approach, given that it 

is one that is compatible with methods that do not use mesh or points. (Oñate, E; et al. 1996) 

Throughout history, there have been two currents of thought as regards the treatment of 

turbulence. One is the so-called deterministic approach, which consists of solving the 

Navier-Stokes equation, with the relevant simplifications, (Euler, Bernoulli) practically 

exclusively via the use of numbers. The other approach is statistical. The work of 

Kolmogorov stands out in this field; work which will be dealt with below, given its later 

influence on numerical methods and the results of same. Apart from the Eulerian or 

Lagrangian methods, classic turbulent fluid theory will be dealt with in Section 2.1, whereas 

the statistical or stochastic approach will be dealt with in Section 2.2,  in clear reference to 

Kolmogorov’s theory. (Kolmogorov, 1941). 

2.1 General theory 
This section provides a brief and concise exposition of successive fluid flow approaches 

designed to respond to the presence of anomalies that were later referred to as turbulence, 

and which gave rise to the concept of turbulent fluid. Furthermore, the equations given 

enable the visualisation of the turbulence in question and its later development.  A Eulerian 

and deterministic focus will be followed in this section.  

Working in reverse to the historical approach, the fluid flow equation formulated by Navier-

Stokes in 1820 is given; firstly, because it is the most general one, and secondly, because, of 

itself, its solution can represent the turbulent flow equation. 

 
డ௨೔డ௧ ൅ ∑ ௝ݑ డ௨೔డ௫ೕ ൌ ߭Δݑ௜ െ డ௣డ௫೔ ൅ ௜݂ሺݔ, ሻ௡௝ୀଵݐ   (1) 

ሬԦݑݒ݅݀  ൌ ∑ డ௨೔డ௫೔௡௜ୀଵ ൌ Ͳ (2) 

,ݔሺݑ  Ͳሻ ൌ  ሻ (3)ݔ଴ሺݑ

Where ui stands for the velocity components at each point and at each moment in time, ǖ is 
the viscosity, p is the pressure at each point and at each moment in time, and fi refers to the 
external forces at each point and at each moment in time. By annulling the viscosity and its 
effects, we get Euler’s fluid flow equation announced in 1750.  
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డ௨೔డ௧ ൅ ∑ ௝ݑ డ௨೔డ௫ೕ ൌ െ డ௣డ௫೔ ൅ ௜݂ሺݔ, ሻ௡௝ୀଵݐ   (4) 

ሬԦݑݒ݅݀  ൌ ∑ డ௨೔డ௫೔௡௜ୀଵ ൌ Ͳ (5) 

,ݔሺݑ  Ͳሻ ൌ  ሻ  (6)ݔ଴ሺݑ

In addition to this simplification, if we make the fluid stationary, so that: 

 
డ௨డ௧ ൌ Ͳ  (7) 

we get the first Bernoulli theorem announced in 1738. 

 
஽஽௧ ቀ݌ ൅ ߩ ൉ ߶ ൅ ߩ ௨మଶ ቁ ൌ Ͳ (8) 

The solving of these equations, given their simplifications and context conditions, provide 
us with a field of speeds and pressures for a fluid in movement. Indeed, as regards the 
Navier-Stokes equation, it can be solved and turbulences and instabilities determined by 
employing powerful numerical solution methods, such as that of the finite element. 
Thus, the equations that govern fluid movement. By means of these two equations, 
particularly the last two (those of Euler and Bernoulli), it was observed that, under certain 
conditions, the results did not correspond to reality, on account of a certain problem of 
disorder developing in the fluid and its flow. Only the accurate and numerical solving of the 
Navier-Stokes equation can exactly reproduce these phenomena. To this end, resort must be 
had to potent computational fluid dynamic (CFD) software. Notwithstanding, in 1883, 
Osborne Reynolds discovered a parameter that predicted or anticipated the chaotic and 
turbulent of the fluid: the Reynolds number. 

 ܴ݁ ൌ ఘ൉௩ೞ൉஽ఓ ൌ ௩ೞ൉஽జ    (9) 

Thus was it established that the flow is stationary, and therefore laminar, for Re<2000 
values, a fact which meant that the solutions given by Bernoulli and Euler were very 
accurate. For values of 2000<Re<4000 the system was deemed to be in transition, and 
therefore, not stationary. The functions that work best are those of Euler and Navier-Stokes. 
This turbulence undergoes three phases or states of development.  
A. Growth of coherent bidimensional vortices1. 
B. Joining of Vortices 
C. Separation of vortices and turbulent state in 3D 
Finally, if completely turbulent, the fluid is non-stationary and tri-dimensinal for values of 
Re>4000. These solutions are only possible by means of using the Navier-Stokes equations. 
In conclusion, only the numerical solution of the Navier-Stokes equation provides a solution 
that considers turbulence. Nevertheless, there are other processes and approaches that will 
be developed in Section 2.3. Turbulence is, therefore, produced by the interaction of the 
fluid with geometry, by the loss of energy due to viscosity, by density variations caused by 
temperature, or other factors, such as changes in speed, or all of these at once. Consequently, 

                                                                 
1 These are referred to as coherent because the vorticity is concentrated and the fluid flows 
around as if it were a solid obstacle. It keeps its shape for longer than a single rotation. 
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the turbulent flow is unpredictable and chaotic in the sense that it depends on a host of 
small variations in the initial conditions and these disturbances are amplified in such a way 
that it becomes possible to predict them in space and time. Another of its features is its great 
capacity for mixing and, lastly, that it affects at various scales and wavelengths. It could be 
said that together, fluid, structure and context conditions, constitute a non-linear, non-
stationary dynamic system. Its most noteworthy characteristic is its sensitivity to the initial 
conditions and its self-similarity, which will serve as a staring point to develop 
Kolmogorov’s theory.  
In the 19th and 20th centuries, several researchers devoted great efforts to studying 
turbulence under certain, extremely particular conditions. Examples of such turbulence or 
instabilities are to those of Von Karman, Kevin-Helmotz, Raleygh-Bernard, and so on. 

2.2 Kolmogorov´s theory 
Kolmogorov’s theory cannot be dealt with without first mentioning the spectral analysis of 

turbulence, or the application of Fourier's analysis to the study of turbulence. Fourier’s 

theory decomposes the fluctuations into sinusoidal components and studies the distribution 

of the turbulent energy along several wavelengths. In this way it becomes possible to get 

several scales of turbulence and their evolution in time. This technique works and produces 

acceptable results when turbulence is homogenous. Under this condition, accurate equations 

can be determined for the speed spectrum and for the transferring of energy between 

difference scales of turbulence, as well as the dissipation of turbulent energy due to 

viscosity. The simplest development assumes that there is no average speed gradient, in 

such a way that the turbulence interacts with itself, with the energy dropping by itself. 

Neither energy sources nor sinks are taken into account. 

To start, we assume that the speed of a particle in the fluid can be decomposed into an 

average speed plus a fluctuation component. 

 ௜ܷ ൌ పܷഥ ൅  ௜  (10)ݑ

Rij is defined as the speed correlation function by the expression: 

 ܴ௜௝ሺݔ, ,ᇱݔ ሻݐ ൌ ,ݔሺݑ ,Ԣݔሺݑሻపݐ  ሻఫതതതതതതതതതതതതതതതതതതതത  (11)ݐ

Given that we assume homogenous turbulence, Rij is only a function of the distance r, which 
is the distance between x and x’: 

 ܴ௜௝ሺݎ, ሻݐ ൌ ,ݔሺݑ ,Ԣݔሺݑሻపݐ  ሻఫതതതതതതതതതതതതതതതതതതതത  (12)ݐ

Therefore, we assume that the value of the correlation function tends to zero when the 
radius tends to the infinite. We now define a spectral function Фij as the Fourier transform of 
the correlation function in 3D: 

,௜௝ሺ݇׎  ሻݐ ൌ ଵሺଶగሻయ ׬ ܴ௜௝ሺݎ, ሻݐ ൉ ݁ି௜௞௥ ൉ ݀ଷ݇  (13) 

This spectral function, which will form the spectral matrix, depends on time and on the 
wave number k, which is a vector. The turbulent kinetic energy can be expressed as: 

 
ଵଶ పതതതതതݑపݑ ൌ ଵଶ ܴ௜௝ሺͲ, ሻݐ ൌ ଵଶ ׬ ,௜௜ሺ݇׎  ሻ݀ଷ݇  (14)ݐ
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Thus, the Kolmogorov theory completes the spectral analysis. The theory postulates high 
Reynolds number values. The small turbulence scales are assumed that serve to balance and 
be controlled by the average energy flow, which is generated in the inertial scale and which 
equals the dissipation rate. Furthermore, Kolmogorov’s theory universally predicts speed 
properties and their differences for small separations, as well as their correlations and 
spectre, only depending on the ǖ y ǆ parameters. Kolmogorov also marked the boundary 
between the transferred or contained energy range (inertial range) and the dissipative 
structures by way of the following expression: 

 
௅ఎ ൌ ݂ሺܴ݁ଷ ସൗ ሻ (25) 

Therefore, given a Reynolds number, the lower scales are not sensitive to the turbulent flow 
in which they find themselves. Nevertheless, the lower scales are intimately related to the 
flow, with their properties varying substantially depending on the specific flow. These 
concepts will form the basis for future methods of modelling and solving fluid movement 
problems, such as k-ǆ and Large Eddy Simulation (LES) models. 

2.3 Simulation of turbulent fluids. 
As is well known, Navier, L.H.H. and Stokes, G.G derived fluid movement equations over 
150 years ago. This equation, along with that of continuity, provides an answer to any fluid 
movement problem. 
The solution and determination of the speed field is, therefore, nothing more than 
discretising the domain and the differential equations and applying context conditions in 
order to repeatedly solve the system formed until achieving convergence. This is the so-
called Direct Numerical Solution (DNS). Nonetheless, this simple method is only useful in 
simple geometries, given that otherwise, the time calculation would be so big as to make 
any simulation unfeasible. This defect arises noticeably when we design fluid-structure (FIS) 
models. Consequently, other models need to be found, which are lest costly computationally 
speaking. 
The most common solution to the high number of elements required by the former 
simulation method, DNS, is to use weighted, or weighting, techniques. In this way, 
modelling is done on a small scale expecting that the solution will respond to the flow as a 
whole. This is the idea that underlies the so-called Reynolds Averaged Navier-Stokes 
(RANS). It must be assumed that the speed of a turbulent flow can be described as follows: 

ሬԦݑ  ൌ ሬԦതݑ ൅  ԢሬሬሬԦ (26)ݑ

That is to say, as the sum of an average speed plus a fluctuating component on this average 
speed. The following is an example of the application of this assumption. It refers to the 2D 
modelling of a turbulent flow on a flat plate, the Navier Stokes (NS) equation for which is 
given below: 

ߩ  ቀడ௨ೣడ௧ ൅ ௫ݑ డ௨ೣడ௫ ൅ ௫ݑ డ௨ೣడ௬ ቁ ൌ ߤ డమ௨ೣడ௬మ  (27) 

replacing  

ߩ  ቀݑ௫തതത డ௨ೣതതതതడ௫ ൅ ௫തതതݑ డ௨ೣതതതതడ௬ ቁ ൌ ߤ డమ௨ೣതതതതడ௬మ െ ߩ డడ௬  Ԣ௬തതതതതതതത (28)ݑԢ௫ݑ
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The difficulty of this expression and of all those assuming equation (28) is that an analytical 
expression of the term is required: 

ߩ  డడ௬  Ԣ௬തതതതതതതത (29)ݑԢ௫ݑ

known as Reynold Stress. In order to avoid this difficulty, the kinetic energy (k) and the 
dissipation rate (ǆ) are modelled. This gives rise to a well known model: the k- ǆ model. 
The simplification consists of the following: 

ߩ  ൉ Ԣ௬തതതതതതതതݑԢ௫ݑ ൌ ௧௨௥௕ߤ డ௨ೣതതതതడ௬  (30) 

where, moreover, 

௧௨௥௕ߤ  ൌ ஼ೖ൉௞మఌ  (31) 

by replacing all of this, in the proposed movement equation, the result is as follows: 

 ቀݑ௫തതത డ௨ೣതതതതడ௫ ൅ ௬തതതݑ డ௨ೣതതതതడ௬ ቁ ൌ ߭ డమ௨ೣതതതതడ௬మ െ ஼ೖ൉௞మఌ డ௨ೣതതതതడ௬  (32) 

 

This k- ǆ model has a big advantage over the DNS model in that it takes less time to 

compute. This model provides acceptable solutions when flow fluctuations are not very 

important. When the flow motor, or the problem, to be studied has to do with pressure 

fluctuation, that is to say, external flow Flow Induced Vibrations (FIV), the RANS model is 

unviable, given that it does not provide quality solutions. There are several RANS model 

variations, the main features of which are shown in Table 1. 
 

 

Table 1. RANS submodels, strengths and weaknesses. 
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Lastly, there is a model that lies halfway between the RANS and DNS. The DNS model has 
been seen to represent the real circumstance and disturbances very well. On the other hand, 
though the RANS model is extremely comfortable computationally speaking, it does not 
represent turbulence or disturbances very well. The so-called Large Eddy Simulation (LES) 
model provides instantaneous solutions, as does the DNS model, while at the same time 
containing models and simplifications such as those in the RANS model. The LES model 
solves the Navier-Stokes equation as does the DNS model, but the equations are spatially 
filtered, or refined. This filtering or refining of the equations means that the flow is 
determined at a characteristic scale, and is modelled afterwards at lower scales. It is the 
application of Kolmogorov’s theory to non-stochastic numerical models. 
This succession of modelling and refining is due to the fact that big eddies behave 
anisotropically and, therefore, must be calculated, whereas smaller eddies behave 
isotropically and can, as such, be treated statistically. Thus, the mesh is such that the 
majority of energy is contained in big eddies and calculated directly, the rest is assigned in a 
weighted manner to flow as a whole.  
The bigger the Reynolds number, the bigger the cost in this LES model. Mathematically, the 
model is based on the Ф flow being formed by two superimposed flows: 

 ߶ ൌ ߶ത ൅ ߶Ԣ (33) 

the mesh flow, or the grand scale flow, ߶ത 
the sub-mesh flow, or the small scale flow  ߶Ԣ 
The grand scale (GS) flow is calculated as follows: 

 ߶ሺݔሻതതതതതതത ൌ ׬ ߶ሺݔᇱሻܩሺݔ,  Ԣ (34)ݔᇱሻ݀ݔ

where 

,ݔሺܩ  ᇱሻݔ ൌ ቊଵజ ݋ݐݏ݁ݎ Ͳݒ∆߳ݔ√   ቋ (35) 

then replacing 

 ߶ሺݔሻതതതതതതത ൌ ଵజ ׬ ߶ሺݔᇱሻ݀ݔԢ (36) 

By applying these assumptions to the flow movement equation 

 
డ௨ഢതതതడ௧ ൅ డడ௫ ൫ݑపഥ ఫഥݑ ൯ ൌ െ ଵఘ డడ௫ ҧ݌ ൅ ߭ డమ௨ഢതതതడ௫ೕమ ൅ ߬௜௝ (37) 

 ߬௜௝ ൌ ఫതതതതതݑపݑ െ పഥݑ ൉  ఫതതതത (38)ݑ

the latter term is modelled on the sub-mesh, or on the SGS sub-model and the accuracy of 
the model rests on the idea that lower speeds than the mesh are homogenous and, therefore, 
can be modelled with great accuracy. The aim of the LES method is to solve the majority of 
the flow and to model only a small part of it. Thus, the LES method strikes a balance 
between mesh size and accuracy. Figure 3, in which the solution for a turbulent flow in a 
pipe compares the RANS method with the LES one, provides an explanatory example. 
These are practically the general models that are used in flow simulation and fluid 
movement. Notwithstanding, there are variations of these basic methods depending on the 
application in question. 
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Fig. 3. Solutions of the same problem with a RANS model (on the left) and LES model (on 
the right). 

Quite clearly, discretisations can be Eulerian, or Lagrangian, in such a way as to respond to 
both forms of tackling problems concerning fluid dynamics. 

3. General effects of the turbulence. (FIC) 

Having introduced turbulence, the turbulent flow and its equations and simulations, the 

question arises as to what can turbulence do? What are its possible effects? To answer these 

questions, first off it is necessary to decide whether the effects in question are general or 

local, that is to say, whether they are provoked by the turbulent flow or, on the contrary, are 

caused by turbulence or instabilities. The latter will be dealt with in Sections 4, 5 and 6, 

while the general effects are considered below. 

Numerous studies have been carried out highlighting the benefits of turbulence with respect 

to miscibility, diffusion and heat exchange, though it can also have harmful effects. Here we 

are going to deal with the phenomenon of spontaneous cavitation, and its effects, in 

turbulent flow. Specifically, our aim is to study the effect of the change of speed caused by 

vorticity and pressure due to load loss on account of turbulence in high energy turbulent 

fluids near saturation point, such as, for example, feed water in power stations. 

Firstly, we are going to define a non-dimensional parameter, which is called the cavitation 
number. 

ܽܥ  ൌ ௉௔ି௉௩భమఘ௩మ  (39) 

where: 
Pa is the local or system pressure; 
Pv is the vaporization pressure at system temperature; 
Ρ is the fluid density at system temperature; 
V is the fluid speed. 
Cavitation will occur when the parameter value is low. There is a limit value that 
corresponds to a determined speed, for each temperature and pressure, below which 
cavitation is ensured.  
Speed can be defined in a turbulent flow as follows: 

ሻݐሺ்ݑ  ൌ ௠ݑ ൅  ሻ (40)ݐሺݑߜ

That is to say, an average value and a fluctuation or oscillation component. Moreover, 
turbulence intensity is defined as: 

ሻݐᇱଶሺݑ  ൌ ଵ் ׬ ଴்ݐሻଶ݀ݐሺ்ݑ  (41) 
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replacing the equation 40 in the equation 39 gives: 

ܽܥ  ൌ ௉௔ି௉௩భమఘሺ௨೘మ ሺ௧ሻାଶ൉௨೘ሺ௧ሻ൉ఋ௨ሺ௧ሻାఋ௨మሺ௧ሻሻ (42) 

If we assume that ǅu(t) is proportional to the standard deviation of the measured values in 
the speed system, and that in turn, this standard deviation is a function of the average 
speed, (Gavilán, C.J. 2008) we find that: 

• ǅu(t) is zero for low speeds, therefore, the Y expression is accurate and can be applied to 
all fluid points. Moreover, the Bernoulli and Euler theorem is applicable, therefore, 
there will be no spontaneous cavitation, unless the average speed changes. 

• For high speeds, ǅu(t)>>0, there may be some speed values at which Ca is lower than 
the average value, and therefore, spontaneous cavitation may occur. 

This effect will be called Fluid Induced Cavitation (FIC), given that, although cavitation is 
associated with turbulence, in turbo-machines or rotary pumps, little attention is paid to 
spontaneous cavitation due to the effect of turbulence on fluid systems. This effect is not 
widely known, though it is most definitely of great importance when dealing with fluids 
that are working very near the vaporization limit, or to put it more clearly, when the system 
pressure is very near the fluid vapour pressure at working temperature. This is particularly 
important for thermal power plants, or energy producing stations. In such facilities, the 
liquid is heated before entering the vaporization element; if there are elements that make the 
pressure fall, such as elbows, T's, filters, etc. in the conditions prior to vaporization, the 
numerator of equation 39 drops, reducing the Ca value, thus representing a high risk 
situation. In the same way, if we have elements in which the speed rises, such as jet pumps, 
venturi tubes, and other restrictions, the denominator increases, in such a way that the Ca 
value falls, thus increasing the risk of cavitation. 

 

Fig. 4. Flow in pipe system. 
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Cavitation, which elsewhere and in other fora is referred to as flashing, is a vibration and 
noise - FIV and FIN - and may even manage to change the flow pattern, and therefore, cause 
FII flow instabilities. Other effects also need to be taken into account, such as the presence of 
erosion-corrosion, in what is, in principle, a single-phase fluid. Furthermore, if there are 
stable cavitation conditions, and a real and permanent void ratio is established, pump 
cavitation is ensured, even when this should not occur according to the calculations. 
There are other reasons for possible cavitation, such as variations in the density and vapour 
pressure parameters on account of changes in the pressure and temperature conditions. 
Let us have a look at a real example. Figure 4 shows the case of feed water speed in a pipe to 

an electricity-generating installation boiler. If we calculate the Ca parameter between two 

points, A and B, already having the average, or tendency, speed and the real one, we see 

that their Ca values are different. After the Ca, v and p values have been calculated in several 

situations, if we extrapolate them, there is such a turbulent speed value that it provokes 

spontaneous cavitation (Figure 5). Therefore, there is a speed limit for each flow at which 

spontaneous cavitation occurs, which coincides with the asymptotic value. 

 

 

Fig. 5. Cavitation number versus flow speed. 

The cavitation effect is not completely harmful, given that occasionally it is provoked by 

means of the speed of the fluid around a vehicle in such a way that movement resistance is 

very low and energy is saved in the movement, the fluid entry length is increased, or the 

energy is increased on knocking against another object in the fluid. This is the case of the 

supercavitating torpedoes used by the Russian navy. 

4. Fluid Induced Vibration. (FIV) 

There are lots of books and articles that have dealt with this subject. Strictly speaking, the 
term was only coined in the 1980’s. In truth, this case study is a particular case of fluid-
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structure interaction. Interest in this subject lies in the fact that the source of vibration is 
dissipated energy caused by turbulence, or in other cases, by eddies that produce oscillating 
lift forces that impregnate objects immersed in the fluid with a vibratory movement. 
There are two basic FIV mechanisms: 

• a self-induced vibrating mechanism 

• a forced vibration mechanism. 
Mathematically speaking, this is true. Nevertheless, the subject is somewhat wider than this 
might suggest, as can be seen from the following classification, which provides us with a 
more complete view. (Figure 6). 
 

 

Fig. 6. Vibration mechanism. 

As far as we are concerned, two of the most important effects, or examples, as regards 
nuclear plants of the Boiling Water Reactor (BWR) type, are those that reflect the influence 
of FIV on reactor internals. That is to say, on single-phase fluids in a non-stationary 
operating system with turbulent flow, and in the case of a bi-phase flow, those that are 
subject to FIV on account of the vibrations caused by the phase change, which may even go 
as far as to cause thermo-hydraulic instabilities.  
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Therefore, we will analyse two examples, fuel element vibrations in a flow with phase 
change and vibration induced by the leak flow in a BWR’s jet pumps. 
In the latter case, the jet pump FIV can be modelled as a vibration induced by the external 
axial flow. This is so because the leak flow through the Slip-Joint is deemed to be external to 
the mixer, as can be seen from Figure 7. 
 

 

Fig. 7. JetPump and Slipjoint leak. 

Thus, the model will be an axial flow cylinder, as described by Chen and Wambsganss 
(1970). The turbulent flow in the exterior, axial fluid gives rise to uneven pressure 
distribution on the outer wall of the pipe. Thus, on lacking balance it possesses resulting 
transverse forces. Moreover, as it is neither a permanent nor a stationary situation, the 
continuous change in pressure distribution over time, in space and in axial length, produces 
vibrations. The situation described is that which is shown in Figure 8. 
 

 

Fig. 8. Pressure distribution in an external flow pattern. 
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The Corcos (1963) model is used to analyse this type of situation. The model is expressed by: 

 ߰௣௣ሺݓ, ,ଵݖ ,ଶݖ ,ଵߠ ଶሻߠ ൌ ߶௣௣ሺݓሻ ൉ ܣ ቀ௪|௭మି௭భ|௏೎ ቁ ൉ ܤ ቀ௪൉஽൉|ఏమିఏభ|ଶ൉௏೎ ቁ ൉ ݁௜௪ೢ|೥మష೥భ|ೇ೎   (43) 

 

where ψpp is the cross-spectral density of the pressure field, Ǘpp is the pressure power 
spectrum at the point, A and B are spatial functions and Vc is the convection speed. 
Ǘpp value is given by: 

 ߶௣௣ሺ݂ݎሻ ൌ ൞Ͳ.ʹ͹ʹ ൉ ͳͲିହ ଴.ଶହൗݎ݂ ݎ݂ ݅ݏ  ൏ ͷ ʹʹ.͹ͷ ൉ ͳͲିହ ଷ ൗݎ݂ ݎ݂ ݅ݏ ൐ ͷ ൢ (44) 

where fr is the reduced frequency, which is given by the following, where Dh is the 
hydraulic diameter: 

ݎ݂  ൌ ௙൉஽௛௏ ൌ ௪൉஽௛ଶ൉గ൉௏ (45) 

The convection speed of the limit layer is given by: 

 
௏೎௏ ൌ Ͳ.͸ ൅ Ͳ.Ͷ݁ቀିଶ.ଶ൉ೢ൉ഃೇ ቁ

 (46) 

where  

ߜ  ൌ ஽௛ଶሺ௡ାଵሻ (47) 

 ݊ ൌ Ͳ.ͳʹͷ ൉ ݉ଷ െ Ͳ.ͳͺͳ ൉ ݉ଶ ൅ Ͳ.͸ʹͷ ൉ ݉ ൅ ͷ.ͺͷͳ  (48) 

 ݉ ൌ logሺܴ݁ሻ െ ͵ (49) 

Lastly, the vibration amplitude is given by the approximations: 

௥௠௦ݕ  ൌ ቐ ܸଵ.ହ ݎ݂ ݅ݏ ൏ Ͳ.ʹܸଶ ݅ݏ Ͳ.ʹ ൏ ݎ݂ ൏ ͵.ͷܸଷ݅ݏ ͵.ͷ ൏ ݎ݂ ቑ (50) 

 

These equations result in the generation of transversal forces, which move the mixer parts, 

the elbows and the riser. Moreover, as a result of its geometrical configuration, mode 3 

vibration causes damage as a result of the stress at the first fixed point of the system, which 

is the joint between the riser and its support. Indeed, it is this stress that provokes 

breakages.  A detail of the turbulence associated with the simulation of slipjoint leak can be 

seen in Figure 9. 

In general, the Païdousis (1973) model is the equation used for industrial settings. 

As far as FIV caused by external flow with phase change is concerned, its study and 

development can basically be put down to the nuclear industry, after the development of 

boiling water reactors. At such plants, boiling occurs on the external part of fuel rods in the 

upflow. This study was later extended to the steam generator pipes of pressurised water 

reactors. Figure 10. 
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Fig. 9. Simulated Slipjoint leak and vortex induced. 

 

Fig. 10. Fuel Bundle and Steam Generator. 

Both studies reached the same conclusion, namely that the vibration amplitude is 
proportional to the mass upflow, but decreases with pressure. As far as fluid quality, or the 
void ratio, is concerned, two peaks can be seen, 0.1-0.25 and 0.4-0.5, which suggests that 
there is great dependence between vibration amplitude and the void ratio, or fluid quality. 
On a BWR (Figure x) type fuel bar, it was established that the pressure power spectrum of 
the excitation force is proportional to V1.56-2.7, while the amplitude is proportional to V0.78-1.35. 
These values were determined in a rod test carried out by Pettigrew and Taylor [13] under 
the following conditions: 
Pressure: 2.8-9 MPa 
Mass flow: 0-4600 Kg/m2s 
Power: 1-1000 Kw 
Quality: 0-0.25. 
Saito (2002) came to the same conclusions in another test under different conditions. 
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5. Fluid Induced Noise (FIN) 

In this section, we will take a look at the noise generated by a turbulent flow. Throughout 
this chapter and the following sections, fluid dynamics is based on movement equations, 
with speed as the unknown, essential analysis value.  
For this particular case of noise induced by turbulence, a change of mindframe is called for 
in the sense of assessing the fluid in terms of pressure, and even density. Original FIN 
theory and expressions are given by the Ligthhill aeroacoustic model (1952/1954), as 
indicated below: 

pଶ׏  െ ଵୡబమ பమ୮ப୲మ ൌ െ பమT౟ౠப୶౟ ப୶ౠ  (51) 

 T୧୨ ൌ ρv୧v୨ (52) 

where Tij is the turbulent stress tensor. Whenever the fluid can be compressed, pressure 
variation is accompanied by density variation, the expression of which is: 

 
డమఘడమ௧ െ ܿ଴ డమఘడ௫೔డ௫ೕ ൌ ଴ߩ డమ୴౟୴ౠడ௫೔డ௫ೕ (53) 

Thus, turbulence collaterally generates pressure and density variation in the fluid. By means 
of the turbulent stress tensor the turbulence produces variations in pressure and density. 
The former cause the noise, and as such, are deemed to be sound sources. 
There are many practical applications of the analysis of turbulence generated noise. Two 
particularly curious, albeit useful ones, have solved some serious problems. The two 
situations in question are: 

• Determination of leaks through the seat of safety relief valves from the outside by 
means of non-intrusive techniques. 

• Element breakage due to resonance frequencies. 
The first of the above situations has been used to detect safety relief valve leaks in BWR 
nuclear plants. The theoretical principle employed is that the seat leak flow produces 
turbulence which in turn generates a characteristic sound. The conceptual model is similar 
to the one used by Van Herpe and Creghton (1994), in which they model the fluid flow 
through a conduit with a restriction inside. These researchers came to the conclusion that 
the acoustic power, dB, is proportional to the speed in the conduit and to the passage 
diameter determined by the restricting element. Consequently, an SRV leak can be detected 
by means of sound and its register, but also by its evolution. The latter claim is based on the 
tests done by EPRI on this particular study NP-2444-SY. In this study, the frequency band is 
established at which the leak is best detected, 40-55 KHz, as well as the complete detection 
interval, 30-60KHz. Likewise, the author holds that regular monitoring can establish drift 
and trend patterns, the development mathematical law of which is that determined by Van 
Herpe y Creghton (1994). 
The other case refers to the catastrophic breakages of steam dryers at BWR plants due to an 
acoustically sourced resonance. (Figure 11). 
After the failure of the Quad cities dryer, a study was carried out on the loads to which it 
was subject. In none of the cases did the operating loads justify the  breakage, or 
degradation, of the component. Consequently, a study was made of the vibratory or 
pulsatory phenomena, by measuring the vibrations at the component and the passage of 
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