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1. Introduction 

A general mixed-integer nonlinear programming problem (MINLP) is formulated as follows: 

 

(1) 

where z = (x, y)T ∈ Z; x ∈ Rv and y ∈ Dw are, respectively, bounded continuous and discrete 

variables; f(z) is a lower-bounded objective function; g(z) = (g1(z),…, gr(z))T is a vector of r  

inequality constraint functions;2 and h(z)= (h1(z),…,hm(z))T is a vector of m equality constraint 

functions. Functions f(z), g(z), and h(z) are general functions that can be discontinuous, non-

differentiable, and not in closed form. 
Without loss of generality, we present our results with respect to minimization problems, 
knowing that maximization problems can be converted to minimization ones by negating 
their objectives. Because there is no closed-form solution to Pm, we develop in this chapter 
efficient procedures for finding locally optimal and feasible solutions to Pm, demonstrate 
that our procedures can lead to better solutions than existing methods, and illustrate the 
procedures on two applications. The proofs that our procedures have well-behaved 
convergence properties can be found in the reference [27], We first define the following 
terms. 

                                                 
1 Research supported by the National Science Foundation Grant IIS 03-12084 and a 
Department of Energy Early Career Principal Investigator Grant. 
2 Given two vectors V1 and V2 of the same dimension, V1 ≥ V2 means that each element of V1 

is greater than or equal to the corresponding element of V2; V1 > V2 means that at least one 
element of V1 is greater than the corresponding element of V2 and the other elements are 
greater than or equal to the corresponding elements of V2. 

Source:  Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and 
Publishing, Vienna, Austria
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Definition 1. A mixed neighborhood N m(z) for z = (x, y)T in the mixed space Rv × Dw
 is: 

 
(2) 

where N c(x) = {x′ : kx′ − xk ≤ ε and ε → 0} is the continuous neighborhood of x, and the discrete 

neighborhood N d(y) is a finite user-defined set of points {y′ ∈ Dw} such that y′ ∈ N d(y) ⇔ y ∈ 

N d(y′) [1]. Here, ε → 0 means that ε is arbitrarily close to 0. 

Definition 2. Point z of Pm is a feasible point iff h(z) = 0 and g(z) ≤ 0. 

Definition 3. Point z∗ is a constrained local minimum (CLMm) of Pm iff z∗ is feasible, and f(z∗) ≤ 

f(z) with respect to all feasible z ∈N m(z∗). 

Definition 4. Point z∗ is a constrained global minimum (CGMm) of Pm iff z∗ is feasible, and  

f(z∗) ≤ f(z) for every feasible z ∈ Z. The set of all CGMm of Pm is Zopt. 

Note that a discrete neighborhood is a user-defined concept because it does not have any 

generally accepted definition. Hence, it is possible for z = (x, y)T to be a CLMm to a 

neighborhood N d(y) but not to another neighborhood . The choice, however, does 

not affect the validity of a search as long as one definition is consistently used throughout. 

Normally, one may choose N d(y) to include discrete points closest to z, although a search 

will also be correct if the neighborhood includes “distant” points. 

Finding a CLMm of Pm is often challenging. First, f(z), g(z), and h(z) may be non-convex and 

highly nonlinear, making it difficult to even find a feasible point or a feasible region. 
Moreover, it is not always useful to keep a search within a feasible region because there may 
be multiple disconnected feasible regions. To find high-quality solutions, a search may have 

to move from one feasible region to another. Second, f(z), g(z), and h(z) may be 

discontinuous or may not be differentiable, rendering it impossible to apply existing 
theories based on gradients. 

A popular method for solving Pm is the penalty method (Section 2.1). It transforms Pm into 

an unconstrained penalty function and finds suitable penalties in such a way that a global 

minimum of the penalty function corresponds to a CGMm of Pm. Because it is 

computationally intractable to look for global minima when the penalty function is highly 

nonlinear, penalty methods are only effective for finding CGMm in special cases. 

This chapter is based on the theory of extended saddle points in mixed space [25, 29] 

(Section 2.2), which shows the one-to-one correspondence between a CLMm of Pm and an 

extended saddle point (ESP) of the corresponding penalty function. The necessary and 

sufficient condition allows us to find a CLMm of Pm by looking for an ESP of the 

corresponding penalty function. 
One way to look for those ESPs is to minimize the penalty function, while gradually 
increasing its penalties until they are larger than some thresholds. The approach is not 
sufficient because it also generates stationary points of the penalty function that are not 
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CLMm of Pm. To avoid those undesirable stationary points, it is possible to restart the search 

when such stationary points are reached, or to periodically decrease the penalties in order 
for the search to escape from such local traps. However, this simple greedy approach for 
updating penalties may not always work well across different problems. 
Our goals in this chapter are to design efficient methods for finding ESPs of a penalty 

formulation of Pm and to illustrate them on two applications. We have made three 

contributions in this chapter. 
First, we propose in Section 3.1 a constrained simulated annealing algorithm (CSA), an 

extension of conventional simulated annealing (SA) [18], for solving Pm. In addition to 

probabilistic descents in the problem-variable subspace as in SA, CSA does probabilistic 
ascents in the penalty subspace, using a method that controls descents and ascents in a 
unified fashion. Because CSA is sample-based, it is inefficient for solving large problems. To 
this end, we propose in Section 3.2 a constraint-partitioned simulated annealing algorithm 
(CPSA). By exploiting the locality of constraints in many constraint optimization problems, 

CPSA partitions Pm into multiple loosely coupled subproblems that are related by very few 

global constraints, solves each subproblem independently, and iteratively resolves the 
inconsistent global constraints. 
Second, we show in Section 4 the asymptotic convergence of CSA and CPSA to a 
constrained global minimum with probability one in discrete constrained optimization 
problems, under a specific temperature schedule [27]. The property can be proved by 
modeling the search as a strongly ergodic Markov chain and by showing that CSA and 
CPSA minimize an implicit virtual energy at any constrained global minimum with 
probability one. The result is significant because it extends conventional SA, which 
guarantees asymptotic convergence in discrete unconstrained optimization, to that in 
discrete constrained optimization. It also establishes the condition under which optimal 
solutions can be found in constraint-partitioned nonlinear optimization problems. 
Last, we evaluate CSA and CPSA in Section 5 by solving some benchmarks in continuous 
space and by demonstrating their effectiveness when compared to other dynamic penalty 
methods. We also apply CSA to solve two real-world applications, one on sensor-network 
placements and another on out-of-core compiler code generation. 

2. Previous work on penalty methods 

Direct and penalty methods are two general approaches for solving Pm. Since direct 

methods are only effective for solving some special cases of Pm, we focus on penalty 

methods in this chapter. 

A penalty function of Pm is a summation of its objective and constraint functions weighted 

by penalties. Using penalty vectors α ∈ Rm
 and β ∈ Rr, the general penalty function for Pm is: 

 (3) 

where P and Q are transformation functions. The goal of a penalty method is to find 

suitable α∗ and β∗ in such a way that z∗ that minimizes (3) corresponds to either a CLMm or a 
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CGMm of Pm. Penalty methods belong to a general approach that can solve continuous, 

discrete, and mixed constrained optimization problems, with no continuity, differentiability, 
and convexity requirements. 

When P(g(z)) and Q(h(z)) are general functions that can take positive and negative values, 

unique values of α∗ and β∗ must be found in order for a local minimum z∗ of (3) to 

correspond to a CLMm or CGMm of Pm. (The proof is not shown.) However, the approach of 

solving Pm by finding local minima of (3) does not always work for discrete or mixed 

problems because there may not exist any feasible penalties at z∗. (This behavior is 

illustrated in Example 1 in Section 2.1.) It is also possible for the penalties to exist at z∗ but 

(3) is not at a local minimum there. A special case exists in continuous problems when 

constraint functions are continuous, differentiable, and regular. For those problems, the 

Karush-Kuhn-Tucker (KKT) condition shows that unique penalties always exist at 

constrained local minima [21]. In general, existing penalty methods for solving Pm transform 

g(z) and h(z) in (3) into non-negative functions before finding its local or global minima. In 

this section, we review some existing penalty methods in the literature. 

2.1 Penalty methods for constrained global optimization 

Static penalty methods. A static-penalty method [21, 22] formulates Pm as the minimization of 

(3) when its transformed constraints have the following properties: a) P(h(z)) ≥ 0 and Q(g(z)) 

≥ 0; and b) P(h(z)) = 0 iff h(z) = 0, and Q(g(z)) = 0 iff g(z) ≤ 0. By finding suitable penalty 

vectors α and β, an example method looks for z∗ by solving the following problem with 

constant ρ > 0: 

 

(4) 

where gj(z)+ = max(0, gj (z)), and g(z)+ = (g1(z)+, . . . , gr(z)+)T . 

Given z∗, an interesting property of P1 is that z∗ is a CGMm of Pm iff there exist finite α∗ ≥ 0 

and β∗ ≥ 0 such that z∗ is a global minimum of Ls((z, α∗∗, β∗∗)T ) for any α∗∗ > α∗ and β∗∗ > 

β∗. To show this result, note that αi and βj in P1 must be greater than zero in order to penalize 

those transformed violated constraint functions |hi(z)|ρ and (gj(z)+) ρ, which are non-negative 

with a minimum of zero. As (4) is to be minimized with respect to z, increasing the penalty 

of a violated constraint to a large enough value will force the corresponding transformed 
constraint function to achieve the minimum of zero, and such penalties always exist if a 

feasible solution to Pm exists. At those points where all the constraints are satisfied, every 

term on the right of (4) except the first is zero, and a global minimum of (4) corresponds to a 

CGMm of Pm. 
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Example 1. Consider the following simple discrete optimization problem: 

 

(5) 

Obviously, y∗ = 0. Assuming a penalty function Lp((y, α)T ) = f(y)+ αy and N d(y) = {y−1, 

y+1}, there is no single α∗ that can make Lp((y, α∗)T ) a local minimum at y∗ = 0 with respect 

to y = ±1. This is true because we arrive at an inconsistent α∗ when we solve the following 

inequalities: 

 

On the other hand, by using Ls((y, α)T ) = f(y) + α |y| and by setting α∗ = 
4

3
 , the CGMd of 

(5) corresponds to the global minimum of Ls((y, α∗∗)T ) for any α∗∗ > α∗.                                  ■ 

A variation of the static-penalty method proposed in [16] uses discrete penalty values and 

assigns a penalty value αi(hi(z)) when hi(z) exceeds a discrete level ℓi (resp., βj(gj(z)) when gj(z)+ 

exceeds a discrete level ℓj), where a higher level of constraint violation entails a larger 

penalty value. The penalty method then solves the following minimization problem: 

 

(6) 

A limitation common to all static-penalty methods is that their penalties have to be found by 
trial and error. Each trial is computationally expensive because it involves finding a global 
minimum of a nonlinear function. To this end, many penalty methods resort to finding local 
minima of penalty functions. However, such an approach is heuristic because there is no 

formal property that relates a CLMm of Pm to a local minimum of the corresponding penalty 

function. As illustrated earlier, it is possible that no feasible penalties exist in order to have a 

local minimum at a CLMm in the penalty function. It is also possible for the penalties to exist 

at the CLMm but the penalty function is not at a local minimum there. 

Dynamic penalty methods. Instead of finding α∗∗ and β∗∗ by trial and error, a dynamic-

penalty method [21, 22] increases the penalties in (4) gradually, finds the global minimum z∗ 
of (4) with respect to z, and stops when z∗ is a feasible solution to Pm. To show that z∗ is a 

CGMm when the algorithm stops, we know that the penalties need to be increased when z∗ is 

a global minimum of (4) but not a feasible solution to Pm. The first time z∗ is a feasible 

solution to Pm, the solution must also be a CGMm. Hence, the method leads to the smallest 

www.intechopen.com



 Simulated Annealing 

 

160 

α∗∗ and β∗∗ that allow a CGMm to be found. However, it has the same limitation as static-

penalty methods because it requires computationally expensive algorithms for finding the 
global minima of nonlinear functions. 
There are many variations of dynamic penalty methods. A well-known one is the non-
stationary method (NS) [17] that solves a sequence of minimization problems with the 
following in iteration t: 

 

(7) 

where  

Here, C and ρ are constant parameters, with a reasonable setting of C = 0.01 and ρ = 2. An 

advantage of the NS penalty method is that it requires only a few parameters to be tuned. 
Another dynamic penalty method is the adaptive penalty method (AP) [5] that makes use of a 
feedback from the search process. AP solves the following minimization problem in 
iteration t: 

 

(8) 

where αi(t) is, respectively, increased, decreased, or left unchanged when the constraint  

hi(z) = 0 is respectively, infeasible, feasible, or neither in the last ℓ iterations. That is, 

 

(9) 

where ℓ is a positive integer, λ1, λ2 > 1, and λ1 ≠ λ2 in order to avoid cycles in updates. We 

use ℓ = 3, λ1 = 1.5, and λ2 = 1.25 in our experiments. A similar rule applies to the updates of 

βj(t). 

The threshold penalty method estimates and dynamically adjusts a near-feasible threshold qi(t) 

(resp., q′j (t)) for each constraint in iteration t. Each threshold indicates a reasonable amount 

of violation allowed for promising but infeasible points during the solution of the following 
problem: 

 

(10) 

There are two other variations of dynamic penalty methods that are not as popular: the 
death penalty method simply rejects all infeasible individuals [4]; and a penalty method that 
uses the number of violated constraints instead of the degree of violations in the penalty 
function [20]. 
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Exact penalty methods. Besides the dynamic penalty methods reviewed above that require 
solving a series of unconstrained minimization problems under different penalty values, the 
exact penalty methods are another class of penalty methods that can yield an optimal solution 
by solving a single unconstrained optimization of the penalty function with appropriate 
penalty values. The most common form solves the following minimization problem in 
continuous space [35, 6]: 

 

(11) 

It has been shown that, for continuous and differentiable problems and when certain 

constraint qualification conditions are satisfied, there exists c∗ > 0 such that the x∗ that 

minimizes (11) is also a global optimal solution to the original problem [35, 6]. In fact, c 

needs to be larger than the summation of all the Lagrange multipliers at x∗, while the 

existence of the Lagrange multipliers requires the continuity and differentiability of the 
functions. 
Besides (11), there are various other formulations of exact penalty methods [11, 12, 10, 3]. 

However, they are limited to continuous and differentiable functions and to global 

optimization. The theoretical results for these methods were developed by relating their 

penalties to their Lagrange multipliers, whose existence requires the continuity and 

differentiability of the constraint functions. 

In our experiments, we only evaluate our proposed methods with respect to dynamic 

penalty methods P3 and P4 for the following reasons. It is impractical to implement P1 

because it requires choosing some suitable penalty values a priori. The control of progress in 

solving P2 is difficult because it requires tuning many (ℓ· (m+r)) parameters that are hard to 

generalize. The method based on solving P5 is also hard to generalize because it depends on 

choosing an appropriate sequence of violation thresholds. Reducing the thresholds quickly 
leads to large penalties and the search trapped at infeasible points, whereas reducing the 
thresholds slowly leads to slow convergence. We do not evaluate exact penalty methods 
because they were developed for problems with continuous and differentiable functions. 

2.2 Necessary and sufficient conditions on constrained local minimization 
We first describe in this section the theory of extended saddle points (ESPs) that shows the 

one-to-one correspondence between a CLMm of Pm and an ESP of the penalty function. We 

then present the partitioning of the ESP condition into multiple necessary conditions and the 
formulation of the corresponding subproblems. Because the results have been published 
earlier [25, 29], we only summarize some high-level concepts without the precise formalism 
and their proofs. 

Definition 5. For penalty vectors α ∈ Rm
 and β ∈ Rr, we define a penalty function of Pm as: 

 

(12) 
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Next, we informally define a constraint-qualification condition needed in the main theorem 

[25]. Consider a feasible point z′ = (x′, y′)T and a neighboring point z′′ = (x′+ f
p , y ′)T under an 

infinitely small perturbation along direction 
f
p  ∈X in the x subspace. When the constraint-

qualification condition is satisfied at z′, it means that there is no 
f
p  such that the rates of 

change of all equality and active inequality constraints between z′′ and z′ are zero. To see 

why this is necessary, assume that f(z) at z′ decreases along 
f
p  and that all equality and 

active inequality constraints at z′ have zero rates of change between z′′ and z′. In this case, it 

is not possible to find some finite penalty values for the constraints at z′′ in such a way that 

leads to a local minimum of the penalty function at z′ with respect to z′′. Hence, if the above 

scenario were true for some 
f
p  at z′, then it is not possible to have a local minimum of the 

penalty function at z′. In short, constraint qualification at z′ requires at least one equality or 

active inequality constraint to have a non-zero rate of change along each direction 
f
p  at z′ in 

the x subspace. 

Theorem 1. Necessary and sufficient condition on CLMm of Pm [25]. Assuming z∗ ∈ Z of Pm 

satisfies the constraint-qualification condition, then z∗ is a CLMm of Pm iff there exist some 

finite α∗ ≥ 0 and β∗ ≥ 0 that satisfies the following extended saddle-point condition (ESPC): 

 (13) 

for any α** > α* and β** > β* and for all z∈N m(z*), α∈ Rm, and β∈ Rr. 

Note that (13) can be satisfied under rather loose conditions because it is true for a range of 

penalty values and not for unique values. For this reason, we call (z*, α**, β**)T an extended 

saddle point (ESP) of (12). The theorem leads to an easy way for finding CLMm. Since an ESP 

is a local minimum of (12) (but not the converse), z* can be found by gradually increasing 

the penalties of those violated constraints in (12) and by repeatedly finding the local minima 

of (12) until a feasible solution to Pm is obtained. The search for local minima can be 

accomplished by any existing local-search algorithm for unconstrained optimization. 

Example 1 (cont’d). In solving (5), if we use Lm((y, α)T) = f(y) + α|y| and choose α* = 1 we 

have an ESP at y* = 0 for any α** > α*. This establishes a local minimum of Lm((y, α)T )at y* = 

0 with respect to N d(y) = {y − 1, y + 1}. Note that the α* that satisfies Theorem 1 is only 

required to establish a local minimum of Lm((y, α)T ) at y* = 0 and is, therefore, smaller than 

the α* (=
4

3
) required to establish a global minimum of Lm((y, α)T )in the static-penalty 

method.                                                                                                                                                  ■ 
An important feature of the ESPC in Theorem 1 is that it can be partitioned in such a way 
that each subproblem implementing a partitioned condition can be solved by looking for 

any α** and β** that are larger than α* and β*. 
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Consider Pt, a version of Pm whose constraints can be partitioned into N subsets: 

 

(14) 

Each subset of constraints can be treated as a subproblem, where Subproblem t, t = 1, . . . ,N, 

has local state vector of ut mixed variables, and  

Here, z(t) includes all the variables that appear in any of the mt local equality constraint 

functions 

 

and the r t local inequality constraint functions 

. Since the partitioning is by constraints, z(1), . . . , z(N) may 

overlap with each other. Further, z(g) includes all the variables that appear in any of the p 

global equality constraint functions H = (H1, . . . ,Hp)T and the q global inequality constraint 

functions G = (G1, . . . , Gq)T. 

We first define N m(z), the mixed neighborhood of z for Pt, and decompose the ESPC in (13) 

into a set of necessary conditions that collectively are sufficient. Each partitioned ESPC is 
then satisfied by finding an ESP of the corresponding subproblem, and any violated global 
constraints are resolved by finding some appropriate penalties. 

Definition 6.  the mixed neighborhood of z for Pt when partitioned by its constraints, 

is: 

 

(15) 

where  is the mixed neighborhood of z(t) (see Definition 2). 

Intuitively, is separated into N neighborhoods, where the tth neighborhood only 

perturbs the variables in z(t) while leaving those variables in z\z(t) unchanged. 

Without showing the details, we can consider Pt as a MINLP and apply Theorem 1 to derive 
its ESPC. We then decompose the ESPC into N necessary conditions, one for each 
subproblem, and an overall necessary condition on the global constraints across the 
subproblems. We first define the penalty function for Subproblem t. 
Definition 7. Let  be the sum of the transformed 

global constraint functions weighted by their penalties, where 
are the penalty vectors for the global 

constraints. Then the penalty function for Pt in (14) and the corresponding penalty function 
in Subproblem t are defined as follows: 

 

(16) 
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 (17) 

where  are the 

penalty vectors for the local constraints in Subproblem t. 

Theorem 2. Partitioned necessary and sufficient ESPC on CLMm of Pt [25]. Given  the 

ESPC in (13) can be rewritten into N + 1 necessary conditions that, collectively, are 

sufficient: 

 

 
(18) 

 (19) 

for any  

and for all   

Theorem 2 shows that the original ESPC in Theorem 1 can be partitioned into N necessary 
conditions in (18) and an overall necessary condition in (19) on the global constraints across 
the subproblems. Because finding an ESP to each partitioned condition is equivalent to 
solving a MINLP, we can reformulate the ESP search of the tth condition as the solution of 
the following optimization problem: 

 
                                                        subject to    

(20) 

The weighted sum of the global constraint functions in the objective of (20) is important 

because it leads to points that minimize the violations of the global constraints. When γT and 

┟T are large enough, solving ( )t

t
P will lead to points, if they exist, that satisfy the global 

constraints. Note that ( )t

t
P  is very similar to the original problem and can be solved by the 

same solver to the original problem with some modifications on the objective function to be 
optimized. 
In summary, we have shown in this section that the search for a CLMm of Pm is equivalent to 
finding an ESP of the corresponding penalty function, and that this necessary and sufficient 
condition can be partitioned into multiple necessary conditions. The latter result allows the 
original problem to be decomposed by its constraints to multiple subproblems and to the 
reweighting of those violated global constraints defined by (19). The major benefit of this 
decomposition is that each subproblem involves only a fraction of the original constraints 
and is, therefore, a significant relaxation of the original problem with much lower 
complexity. The decomposition leads to a large reduction in the complexity of the original 
problem if the global constraints is small in quantity and can be resolved efficiently. We 
demonstrate in Section 5 that the number of global constraints in many benchmarks is 
indeed small when we exploit the locality of the constraints. In the next section, we describe 
our extensions to simulated annealing for finding ESPs. 
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3. Simulated annealing for constrained optimization 

In this section, we present three algorithms for finding ESPs: the first two implementing the 
results in Theorems 1 and 2, and the third extending the penalty search algorithms in 
Section 2.1. All three methods are based on sampling the search space of a problem during 
their search and can be applied to solve continuous, discrete, and mixed-integer 

optimization problems. Without loss of generality, we only consider Pm with equality 

constraints, since an inequality constraint gj(z) ≤ 0 can be transformed into an equivalent 

equality constraint gj(z)+ = 0. 

3.1 Constrained simulated annealing (CSA) 

Figure 1 presents CSA, our algorithm for finding an ESP whose (z*, α**)T satisfies (13). In 

addition to probabilistic descents in the z subspace as in SA [18], with an acceptance 

probability governed by a temperature that is reduced by a properly chosen cooling 
schedule, CSA also does probabilistic ascents in the penalty subspace. The success of CSA 
lies in its strategy to search in the joint space, instead of applying SA to search in the 
subspace of the penalty function and updating the penalties in a separate phase of the 
algorithm. The latter approach would be taken in existing static and the dynamic penalty 
methods discussed in Section 2.1. CSA overcomes the limitations of existing penalty 
methods because it does not require a separate algorithm for choosing penalties. The rest of 
this section explains the steps of CSA [30, 28]. 
 

 
 

Figure 1. CSA: Constrained simulated annealing (see text for the initial values of the 
parameters). The differences between CSA and SA lie in their definitions of state z, 

neighborhood N m(z), generation probability G(z, z′) and acceptance probability AT (z, z′). 
 

Line 2 sets a starting point z ← (z, α)T , where z can be either user-provided or randomly 

generated (such as using a fixed seed 123 in our experiments), and α is initialized to zero. 

Line 3 initializes control parameter temperature T  to be so large that almost any trial point z′ 
will be accepted. In our experiments on continuous problems, we initialize T   

by first randomly generating 100 points of x and their corresponding neighbors  
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x′ ∈ N c(x) in close proximity, where |x′i−xi| ≤ 0.001, and then setting 

 Hence, we use a large initial T  if the function 

is rugged is large), or the function is not rugged but its 

constraint violation (|hi(x)|) is large. We also initialize κ to 0.95 in our experiments. 

Line 4 sets the number of iterations at each temperature. In our experiments, we choose NT ← 

ζ (20n + m) where ζ ← 10(n + m), n is the number of variables, and m is the number of 

equality constraints. This setting is based on the heuristic rule in [9] using n +m instead of n. 

Line 5 stops CSA when the current z is not changed, i.e., no other z′ is accepted, in two 

successive temperature changes, or when the current T is small enough (e.g. T < 10−6). 

Line 7 generates a random point z′ ∈ N m(z) from the current , where  

Λ = Rm
 is the space of the penalty vector. In our implementation, N m(z) consists of (z′, α)T 

and  (z, α′)T , where z′∈  (see Definition 1), and α′ ∈  is a point neighboring to α 

when h(z) ≠ 0: 

 (21) 

and  (22) 

According to this definition, αi is not perturbed when hi(z) = 0 is satisfied. 

G(z, z′), the generation probability from z to z′ ∈N m(z), satisfies: 

 
(23) 

Since the choice of G(z, z′) is arbitrary as long as it satisfies (23), we select z′ in our 

experiments with uniform probability across all the points in N m(z), independent of T : 

 
(24) 

As we perturb either z or α but not both simultaneously, (24) means that z′ is generated 

either by choosing z′ ∈  randomly or by generating α′ uniformly in a predefined range. 

Line 8 accepts z′ with acceptance probability AT (z, z′) that consists of two components, 

depending on whether z or α is changed in z′: 

 

(25) 
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The acceptance probability in (25) differs from the acceptance probability used in 

conventional SA, which only has the first case in (25) and whose goal is to look for a global 

minimum in the z subspace. Without the α subspace, only probabilistic descents in the z 

subspace are carried out. 

 

 

Figure 2. CPSA: Constraint-partitioned simulated annealing. 

In contrast, our goal is to look for an ESP in the joint Z × Λ space, each existing at a local 

minimum in the z subspace and at a local maximum in the α subspace. To this end, CSA 

carries out probabilistic descents of  with respect to z for each fixed α. That is, 

when we generate a new z′ under a fixed α, we accept it with probability one when 

is negative; otherwise, we accept it with probability 

. This step has exactly the same effect as in conventional SA; that is, it performs 

descents with occasional ascents in the z subspace. 

However, descents in the z subspace alone will lead to a local/global minimum of the 

penalty function without satisfying the corresponding constraints. In order to satisfy all the 

constraints, CSA also carries out probabilistic ascents of  with respect to α for 

each fixed z in order to increase the penalties of violated constraints and to force them into 

satisfaction. Hence, when we generate a new α′ under a fixed z, we accept it with probability 

one when   is positive; otherwise, we accept it with 

probability . This step is the same as that in conventional SA when performing 

ascents with occasional descents in the α subspace. Note that when a constraint is satisfied, 

the corresponding penalty will not be changed according to (22). 

Finally, Line 10 reduces T  by the following cooling schedule after looping NT times at given T : 

 (26) 
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At high T, (25) allows any trial point to be accepted with high probabilities, thereby 
allowing the search to traverse a large space and overcome infeasible regions. When T is 
reduced, the acceptance probability decreases, and at very low temperatures, the algorithm 
behaves like a local search. 

3.2 Constraint-Partitioned Simulated Annealing (CPSA) 
We present in this section CPSA, an extension of CSA that decomposes the search in CSA 
into multiple subproblems after partitioning the constraints into subsets. Recall that, 
according to Theorem 2, Pt in (14) can be partitioned into a sequence of N subproblems 
defined in (20) and an overall necessary condition defined in (19) on the global constraints 
across the subproblems, after choosing an appropriate mixed neighborhood. Instead of 
considering all the constraints together as in CSA, CPSA performs searches in multiple 
subproblems, each involving a small subset of the constraints. As in CSA, we only consider 
Pt with equality constraints. 
Figure 2 illustrates the idea in CPSA. Unlike the original CSA that solves the problem as a 

whole, CPSA solves each subproblem independently. In Subproblem t, t = 1, ...,N, CSA is 

performed in the (z(t), α(t))T subspace related to the local constraints h(t)(z(t)) = 0. In 

addition, there is a global search that explores in the (z(g),γ)T subspace on the global 

constraints H(z) = 0. This additional search is needed for resolving any violated global 

constraints. 
 

 

Figure 3. The CPSA search procedure. 

Figure 3 describes the CPSA procedure. The first six lines are similar to those in CSA. 
To facilitate the convergence analysis of CPSA in a Markov-chain model, Lines 7-14 
randomly pick a subproblem for evaluation, instead of deterministically enumerating the 
subproblems in a round-robin fashion, and stochastically accept a new probe using an 
acceptance probability governed by a decreasing temperature. This approach leads to a 
memoryless Markovian process in CPSA. 
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Line 7 randomly selects Subproblem i, i = 1 . . . ,N +1, with probability Ps(t), where Ps(t) can 

be arbitrarily chosen as long as: 

 

(27) 

When t is between 1 and N (Line 8), it represents a local exploration step in Subproblem t. In 

this case, Line 9 generates a trial point  from the current point 

 using a generation probability G(t)(z, z′) that can be arbitrary as long as the 

following is satisfied: 

 
(28) 

The point is generated by perturbing z(t) and α(t) in their neighborhood : 

 (29) 

 

                                  

(30) 
 

and  is defined in (15) and  This means that z′ ∈  only differs 

from z in z(t) or α(t) and remains the same for the other variables. This is different from CSA 

that perturbs z in the overall variable space. As in CSA, αi is not perturbed when hi(z(t)) = 0 

is satisfied. Last, Line 10 accepts z′ with the Metropolis probability AT (z, z′) similar to that in 

(25): 

 

(31) 

When t = N + 1 (Line 11), it represents a global exploration step. In this case, Line 12 

generates a random trial point  using a generation probability G(g)(z, z′)  

that satisfies the condition similar to that in (28). Assuming
1m

N (z(g)) to be the mixed 

neighborhood of z(g) and Λ(g) = Rp, z′ is obtained by perturbing z(g) and γ in their 

neighborhood : 

 (32) 

 
(33) 
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 (34) 

Again, z′ is accepted with probability AT (z, z′) in (31) (Line 13). Note that both  (z) 

and  ensure the ergodicity of the Markov chain, which is required for achieving 

asymptotic convergence. 
When compared to CSA, CPSA reduces the search complexity through constraint 

partitioning. Since both CSA and CPSA need to converge to an equilibrium distribution of 

variables at a given temperature before the temperature is reduced, the total search time 

depends on the convergence time at each temperature. By partitioning the constraints into 

subsets, each subproblem only involves an exponentially smaller subspace with a small 

number of variables and penalties. Thus, each subproblem takes significantly less time to 

converge to an equilibrium state at a given temperature, and the total time for all the 

subproblems to converge is also significantly reduced. This reduction in complexity is 

experimentally validated in Section 5. 

3.3 Greedy ESPC Search Method (GEM) 
In this section, we present a dynamic penalty method based on a greedy search of an ESP. 

Instead of probabilistically accepting a probe as in CSA and CPSA, our greedy approach 

accepts the probe if it improves the value of the penalty function and rejects it otherwise. 

One simple approach that does not work well is to gradually increase α** until α** > α*, 

while minimizing the penalty function with respect to z using an existing local-search 

method. This simple iterative search does not always work well because the penalty 

function has many local minima that satisfy the second inequality in (13), but some of these 

local minima do not satisfy the first inequality in (13) even when α** > α*. Hence, the search 

may generate stationary points that are local minima of the penalty function but are not 

feasible solutions to the original problem. 

To address this issue, Figure 4 shows a global search called the Greedy ESPC Search Method 
[32] (GEM). GEM uses the following penalty function: 

 
(35) 

Lines 5-8 carries out Ng iterative descents in the z subspace. In each iteration, Line 6 

generates a probe z′ ∈  neighboring to z. As defined in (24) for CSA, we select z′ with 

uniform probability across all the points in . Line 7 then evaluates L g  ((z′, α)T ) and 

accepts z′ only when it reduces the value of L g . After the Ng  descents, Line 9 updates the 

penalty vector α in order to bias the search towards resolving those violated constraints. 

When α** reaches its upper bound during a search but a local minimum of L g  does not 

correspond to a CLMm of Pm, we can reduce α** instead of restarting the search from a new 

starting point. The decrease will change the terrain of L g  and “lower” its barrier, thereby 
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allowing a local search to continue in the same trajectory and move to another local 

minimum of L g . In Line 10, we reduce the penalty value of a constraint when its maximum 

violation is not reduced for three consecutive iterations. To reduce the penalties, Line 11 

multiplies each element in α by a random real number uniformly generated between 0.4 to 

0.6. By repeatedly increasing α** to its upper bound and by reducing it to some lower 
bound, a local search will be able to escape from local traps and visit multiple local minima 
of the penalty function. We leave the presentation of the parameters used in GEM and its 
experimental results to Section 5. 
 

 

Figure 4. Greedy ESPC search method (GEM). 

4. Asymptotic convergence of CSA and CPSA 

In this subsection, we show the asymptotic convergence of CSA and CPSA to a constrained 
global minimum in discrete constrained optimization problems. Without repeating the 
definitions in Section 1, we can similarly define a discrete nonlinear programming problem 

(Pd), a discrete neighborhood (N d(y)), a discrete constrained local minimum (CLMd), a 

discrete constrained global minimum (CGMd), and a penalty function in discrete space (Ld). 

4.1 Asymptotic convergence of CSA 
We first define the asymptotic convergence property. For a global minimization problem, let  

Ω be its search space, Ωs be the set of all global minima, and ω(j) ∈ Ω, j = 0, 1, . . . , be a 

sequence of points generated by an iterative procedure ψ until some stopping conditions 

hold. 

Definition 8. Procedure ψ is said to have asymptotic convergence to a global minimum, or 

simply asymptotic convergence [2], if ψ converges with probability one to an element in Ωs; 

that is, lim ( ( ) ) 1
s

j
P jω→∞ ∈Ω = , independent of ω (0), where P(w) is the probability of event w. 

In the following, we first state the result on the asymptotic convergence of CSA to a CGMd of 

Pd with probability one when T approaches 0 and when T is reduced according to a specific 

cooling schedule. By modeling CSA by an inhomogeneous Markov chain, we show that the 
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