
9

Theory and Applications of Simulated
Annealing for Nonlinear

Constrained Optimization1

Benjamin W. Wah1, Yixin Chen2 and Tao Wang3
1Department of Electrical and Computer Engineering and the Coordinated Science

Laboratory, University of Illinois,
2Department of Computer Science, Washington University,

3Synopsys, Inc.
USA

1. Introduction

A general mixed-integer nonlinear programming problem (MINLP) is formulated as follows:

(1)

where z = (x, y)T ∈ Z; x ∈ Rv and y ∈ Dw are, respectively, bounded continuous and discrete

variables; f(z) is a lower-bounded objective function; g(z) = (g1(z),…, gr(z))T is a vector of r

inequality constraint functions;2 and h(z)= (h1(z),…,hm(z))T is a vector of m equality constraint

functions. Functions f(z), g(z), and h(z) are general functions that can be discontinuous, non-

differentiable, and not in closed form.
Without loss of generality, we present our results with respect to minimization problems,
knowing that maximization problems can be converted to minimization ones by negating
their objectives. Because there is no closed-form solution to Pm, we develop in this chapter
efficient procedures for finding locally optimal and feasible solutions to Pm, demonstrate
that our procedures can lead to better solutions than existing methods, and illustrate the
procedures on two applications. The proofs that our procedures have well-behaved
convergence properties can be found in the reference [27], We first define the following
terms.

1 Research supported by the National Science Foundation Grant IIS 03-12084 and a
Department of Energy Early Career Principal Investigator Grant.
2 Given two vectors V1 and V2 of the same dimension, V1 ≥ V2 means that each element of V1

is greater than or equal to the corresponding element of V2; V1 > V2 means that at least one
element of V1 is greater than the corresponding element of V2 and the other elements are
greater than or equal to the corresponding elements of V2.

Source: Simulated Annealing, Book edited by: Cher Ming Tan, ISBN 978-953-7619-07-7, pp. 420, February 2008, I-Tech Education and
Publishing, Vienna, Austria

O
pe

n
A

cc
es

s
D

at
ab

as
e

w
w

w
.i-

te
ch

on
lin

e.
co

m

www.intechopen.com

 Simulated Annealing

156

Definition 1. A mixed neighborhood N m(z) for z = (x, y)T in the mixed space Rv × Dw
 is:

(2)

where N c(x) = {x′ : kx′ − xk ≤ ε and ε → 0} is the continuous neighborhood of x, and the discrete

neighborhood N d(y) is a finite user-defined set of points {y′ ∈ Dw} such that y′ ∈ N d(y) ⇔ y ∈

N d(y′) [1]. Here, ε → 0 means that ε is arbitrarily close to 0.

Definition 2. Point z of Pm is a feasible point iff h(z) = 0 and g(z) ≤ 0.

Definition 3. Point z∗ is a constrained local minimum (CLMm) of Pm iff z∗ is feasible, and f(z∗) ≤

f(z) with respect to all feasible z ∈N m(z∗).

Definition 4. Point z∗ is a constrained global minimum (CGMm) of Pm iff z∗ is feasible, and

f(z∗) ≤ f(z) for every feasible z ∈ Z. The set of all CGMm of Pm is Zopt.

Note that a discrete neighborhood is a user-defined concept because it does not have any

generally accepted definition. Hence, it is possible for z = (x, y)T to be a CLMm to a

neighborhood N d(y) but not to another neighborhood . The choice, however, does

not affect the validity of a search as long as one definition is consistently used throughout.

Normally, one may choose N d(y) to include discrete points closest to z, although a search

will also be correct if the neighborhood includes “distant” points.

Finding a CLMm of Pm is often challenging. First, f(z), g(z), and h(z) may be non-convex and

highly nonlinear, making it difficult to even find a feasible point or a feasible region.
Moreover, it is not always useful to keep a search within a feasible region because there may
be multiple disconnected feasible regions. To find high-quality solutions, a search may have

to move from one feasible region to another. Second, f(z), g(z), and h(z) may be

discontinuous or may not be differentiable, rendering it impossible to apply existing
theories based on gradients.

A popular method for solving Pm is the penalty method (Section 2.1). It transforms Pm into

an unconstrained penalty function and finds suitable penalties in such a way that a global

minimum of the penalty function corresponds to a CGMm of Pm. Because it is

computationally intractable to look for global minima when the penalty function is highly

nonlinear, penalty methods are only effective for finding CGMm in special cases.

This chapter is based on the theory of extended saddle points in mixed space [25, 29]

(Section 2.2), which shows the one-to-one correspondence between a CLMm of Pm and an

extended saddle point (ESP) of the corresponding penalty function. The necessary and

sufficient condition allows us to find a CLMm of Pm by looking for an ESP of the

corresponding penalty function.
One way to look for those ESPs is to minimize the penalty function, while gradually
increasing its penalties until they are larger than some thresholds. The approach is not
sufficient because it also generates stationary points of the penalty function that are not

www.intechopen.com

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization

157

CLMm of Pm. To avoid those undesirable stationary points, it is possible to restart the search

when such stationary points are reached, or to periodically decrease the penalties in order
for the search to escape from such local traps. However, this simple greedy approach for
updating penalties may not always work well across different problems.
Our goals in this chapter are to design efficient methods for finding ESPs of a penalty

formulation of Pm and to illustrate them on two applications. We have made three

contributions in this chapter.
First, we propose in Section 3.1 a constrained simulated annealing algorithm (CSA), an

extension of conventional simulated annealing (SA) [18], for solving Pm. In addition to

probabilistic descents in the problem-variable subspace as in SA, CSA does probabilistic
ascents in the penalty subspace, using a method that controls descents and ascents in a
unified fashion. Because CSA is sample-based, it is inefficient for solving large problems. To
this end, we propose in Section 3.2 a constraint-partitioned simulated annealing algorithm
(CPSA). By exploiting the locality of constraints in many constraint optimization problems,

CPSA partitions Pm into multiple loosely coupled subproblems that are related by very few

global constraints, solves each subproblem independently, and iteratively resolves the
inconsistent global constraints.
Second, we show in Section 4 the asymptotic convergence of CSA and CPSA to a
constrained global minimum with probability one in discrete constrained optimization
problems, under a specific temperature schedule [27]. The property can be proved by
modeling the search as a strongly ergodic Markov chain and by showing that CSA and
CPSA minimize an implicit virtual energy at any constrained global minimum with
probability one. The result is significant because it extends conventional SA, which
guarantees asymptotic convergence in discrete unconstrained optimization, to that in
discrete constrained optimization. It also establishes the condition under which optimal
solutions can be found in constraint-partitioned nonlinear optimization problems.
Last, we evaluate CSA and CPSA in Section 5 by solving some benchmarks in continuous
space and by demonstrating their effectiveness when compared to other dynamic penalty
methods. We also apply CSA to solve two real-world applications, one on sensor-network
placements and another on out-of-core compiler code generation.

2. Previous work on penalty methods

Direct and penalty methods are two general approaches for solving Pm. Since direct

methods are only effective for solving some special cases of Pm, we focus on penalty

methods in this chapter.

A penalty function of Pm is a summation of its objective and constraint functions weighted

by penalties. Using penalty vectors α ∈ Rm
 and β ∈ Rr, the general penalty function for Pm is:

 (3)

where P and Q are transformation functions. The goal of a penalty method is to find

suitable α∗ and β∗ in such a way that z∗ that minimizes (3) corresponds to either a CLMm or a

www.intechopen.com

 Simulated Annealing

158

CGMm of Pm. Penalty methods belong to a general approach that can solve continuous,

discrete, and mixed constrained optimization problems, with no continuity, differentiability,
and convexity requirements.

When P(g(z)) and Q(h(z)) are general functions that can take positive and negative values,

unique values of α∗ and β∗ must be found in order for a local minimum z∗ of (3) to

correspond to a CLMm or CGMm of Pm. (The proof is not shown.) However, the approach of

solving Pm by finding local minima of (3) does not always work for discrete or mixed

problems because there may not exist any feasible penalties at z∗. (This behavior is

illustrated in Example 1 in Section 2.1.) It is also possible for the penalties to exist at z∗ but

(3) is not at a local minimum there. A special case exists in continuous problems when

constraint functions are continuous, differentiable, and regular. For those problems, the

Karush-Kuhn-Tucker (KKT) condition shows that unique penalties always exist at

constrained local minima [21]. In general, existing penalty methods for solving Pm transform

g(z) and h(z) in (3) into non-negative functions before finding its local or global minima. In

this section, we review some existing penalty methods in the literature.

2.1 Penalty methods for constrained global optimization

Static penalty methods. A static-penalty method [21, 22] formulates Pm as the minimization of

(3) when its transformed constraints have the following properties: a) P(h(z)) ≥ 0 and Q(g(z))

≥ 0; and b) P(h(z)) = 0 iff h(z) = 0, and Q(g(z)) = 0 iff g(z) ≤ 0. By finding suitable penalty

vectors α and β, an example method looks for z∗ by solving the following problem with

constant ρ > 0:

(4)

where gj(z)+ = max(0, gj (z)), and g(z)+ = (g1(z)+, . . . , gr(z)+)T .

Given z∗, an interesting property of P1 is that z∗ is a CGMm of Pm iff there exist finite α∗ ≥ 0

and β∗ ≥ 0 such that z∗ is a global minimum of Ls((z, α∗∗, β∗∗)T) for any α∗∗ > α∗ and β∗∗ >

β∗. To show this result, note that αi and βj in P1 must be greater than zero in order to penalize

those transformed violated constraint functions |hi(z)|ρ and (gj(z)+) ρ, which are non-negative

with a minimum of zero. As (4) is to be minimized with respect to z, increasing the penalty

of a violated constraint to a large enough value will force the corresponding transformed
constraint function to achieve the minimum of zero, and such penalties always exist if a

feasible solution to Pm exists. At those points where all the constraints are satisfied, every

term on the right of (4) except the first is zero, and a global minimum of (4) corresponds to a

CGMm of Pm.

www.intechopen.com

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization

159

Example 1. Consider the following simple discrete optimization problem:

(5)

Obviously, y∗ = 0. Assuming a penalty function Lp((y, α)T) = f(y)+ αy and N d(y) = {y−1,

y+1}, there is no single α∗ that can make Lp((y, α∗)T) a local minimum at y∗ = 0 with respect

to y = ±1. This is true because we arrive at an inconsistent α∗ when we solve the following

inequalities:

On the other hand, by using Ls((y, α)T) = f(y) + α |y| and by setting α∗ =
4

3
 , the CGMd of

(5) corresponds to the global minimum of Ls((y, α∗∗)T) for any α∗∗ > α∗. ■

A variation of the static-penalty method proposed in [16] uses discrete penalty values and

assigns a penalty value αi(hi(z)) when hi(z) exceeds a discrete level ℓi (resp., βj(gj(z)) when gj(z)+

exceeds a discrete level ℓj), where a higher level of constraint violation entails a larger

penalty value. The penalty method then solves the following minimization problem:

(6)

A limitation common to all static-penalty methods is that their penalties have to be found by
trial and error. Each trial is computationally expensive because it involves finding a global
minimum of a nonlinear function. To this end, many penalty methods resort to finding local
minima of penalty functions. However, such an approach is heuristic because there is no

formal property that relates a CLMm of Pm to a local minimum of the corresponding penalty

function. As illustrated earlier, it is possible that no feasible penalties exist in order to have a

local minimum at a CLMm in the penalty function. It is also possible for the penalties to exist

at the CLMm but the penalty function is not at a local minimum there.

Dynamic penalty methods. Instead of finding α∗∗ and β∗∗ by trial and error, a dynamic-

penalty method [21, 22] increases the penalties in (4) gradually, finds the global minimum z∗
of (4) with respect to z, and stops when z∗ is a feasible solution to Pm. To show that z∗ is a

CGMm when the algorithm stops, we know that the penalties need to be increased when z∗ is

a global minimum of (4) but not a feasible solution to Pm. The first time z∗ is a feasible

solution to Pm, the solution must also be a CGMm. Hence, the method leads to the smallest

www.intechopen.com

 Simulated Annealing

160

α∗∗ and β∗∗ that allow a CGMm to be found. However, it has the same limitation as static-

penalty methods because it requires computationally expensive algorithms for finding the
global minima of nonlinear functions.
There are many variations of dynamic penalty methods. A well-known one is the non-
stationary method (NS) [17] that solves a sequence of minimization problems with the
following in iteration t:

(7)

where

Here, C and ρ are constant parameters, with a reasonable setting of C = 0.01 and ρ = 2. An

advantage of the NS penalty method is that it requires only a few parameters to be tuned.
Another dynamic penalty method is the adaptive penalty method (AP) [5] that makes use of a
feedback from the search process. AP solves the following minimization problem in
iteration t:

(8)

where αi(t) is, respectively, increased, decreased, or left unchanged when the constraint

hi(z) = 0 is respectively, infeasible, feasible, or neither in the last ℓ iterations. That is,

(9)

where ℓ is a positive integer, λ1, λ2 > 1, and λ1 ≠ λ2 in order to avoid cycles in updates. We

use ℓ = 3, λ1 = 1.5, and λ2 = 1.25 in our experiments. A similar rule applies to the updates of

βj(t).

The threshold penalty method estimates and dynamically adjusts a near-feasible threshold qi(t)

(resp., q′j (t)) for each constraint in iteration t. Each threshold indicates a reasonable amount

of violation allowed for promising but infeasible points during the solution of the following
problem:

(10)

There are two other variations of dynamic penalty methods that are not as popular: the
death penalty method simply rejects all infeasible individuals [4]; and a penalty method that
uses the number of violated constraints instead of the degree of violations in the penalty
function [20].

www.intechopen.com

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization

161

Exact penalty methods. Besides the dynamic penalty methods reviewed above that require
solving a series of unconstrained minimization problems under different penalty values, the
exact penalty methods are another class of penalty methods that can yield an optimal solution
by solving a single unconstrained optimization of the penalty function with appropriate
penalty values. The most common form solves the following minimization problem in
continuous space [35, 6]:

(11)

It has been shown that, for continuous and differentiable problems and when certain

constraint qualification conditions are satisfied, there exists c∗ > 0 such that the x∗ that

minimizes (11) is also a global optimal solution to the original problem [35, 6]. In fact, c

needs to be larger than the summation of all the Lagrange multipliers at x∗, while the

existence of the Lagrange multipliers requires the continuity and differentiability of the
functions.
Besides (11), there are various other formulations of exact penalty methods [11, 12, 10, 3].

However, they are limited to continuous and differentiable functions and to global

optimization. The theoretical results for these methods were developed by relating their

penalties to their Lagrange multipliers, whose existence requires the continuity and

differentiability of the constraint functions.

In our experiments, we only evaluate our proposed methods with respect to dynamic

penalty methods P3 and P4 for the following reasons. It is impractical to implement P1

because it requires choosing some suitable penalty values a priori. The control of progress in

solving P2 is difficult because it requires tuning many (ℓ· (m+r)) parameters that are hard to

generalize. The method based on solving P5 is also hard to generalize because it depends on

choosing an appropriate sequence of violation thresholds. Reducing the thresholds quickly
leads to large penalties and the search trapped at infeasible points, whereas reducing the
thresholds slowly leads to slow convergence. We do not evaluate exact penalty methods
because they were developed for problems with continuous and differentiable functions.

2.2 Necessary and sufficient conditions on constrained local minimization
We first describe in this section the theory of extended saddle points (ESPs) that shows the

one-to-one correspondence between a CLMm of Pm and an ESP of the penalty function. We

then present the partitioning of the ESP condition into multiple necessary conditions and the
formulation of the corresponding subproblems. Because the results have been published
earlier [25, 29], we only summarize some high-level concepts without the precise formalism
and their proofs.

Definition 5. For penalty vectors α ∈ Rm
 and β ∈ Rr, we define a penalty function of Pm as:

(12)

www.intechopen.com

 Simulated Annealing

162

Next, we informally define a constraint-qualification condition needed in the main theorem

[25]. Consider a feasible point z′ = (x′, y′)T and a neighboring point z′′ = (x′+ f
p , y ′)T under an

infinitely small perturbation along direction
f
p ∈X in the x subspace. When the constraint-

qualification condition is satisfied at z′, it means that there is no
f
p such that the rates of

change of all equality and active inequality constraints between z′′ and z′ are zero. To see

why this is necessary, assume that f(z) at z′ decreases along
f
p and that all equality and

active inequality constraints at z′ have zero rates of change between z′′ and z′. In this case, it

is not possible to find some finite penalty values for the constraints at z′′ in such a way that

leads to a local minimum of the penalty function at z′ with respect to z′′. Hence, if the above

scenario were true for some
f
p at z′, then it is not possible to have a local minimum of the

penalty function at z′. In short, constraint qualification at z′ requires at least one equality or

active inequality constraint to have a non-zero rate of change along each direction
f
p at z′ in

the x subspace.

Theorem 1. Necessary and sufficient condition on CLMm of Pm [25]. Assuming z∗ ∈ Z of Pm

satisfies the constraint-qualification condition, then z∗ is a CLMm of Pm iff there exist some

finite α∗ ≥ 0 and β∗ ≥ 0 that satisfies the following extended saddle-point condition (ESPC):

 (13)

for any α** > α* and β** > β* and for all z∈N m(z*), α∈ Rm, and β∈ Rr.

Note that (13) can be satisfied under rather loose conditions because it is true for a range of

penalty values and not for unique values. For this reason, we call (z*, α**, β**)T an extended

saddle point (ESP) of (12). The theorem leads to an easy way for finding CLMm. Since an ESP

is a local minimum of (12) (but not the converse), z* can be found by gradually increasing

the penalties of those violated constraints in (12) and by repeatedly finding the local minima

of (12) until a feasible solution to Pm is obtained. The search for local minima can be

accomplished by any existing local-search algorithm for unconstrained optimization.

Example 1 (cont’d). In solving (5), if we use Lm((y, α)T) = f(y) + α|y| and choose α* = 1 we

have an ESP at y* = 0 for any α** > α*. This establishes a local minimum of Lm((y, α)T)at y* =

0 with respect to N d(y) = {y − 1, y + 1}. Note that the α* that satisfies Theorem 1 is only

required to establish a local minimum of Lm((y, α)T) at y* = 0 and is, therefore, smaller than

the α* (=
4

3
) required to establish a global minimum of Lm((y, α)T)in the static-penalty

method. ■
An important feature of the ESPC in Theorem 1 is that it can be partitioned in such a way
that each subproblem implementing a partitioned condition can be solved by looking for

any α** and β** that are larger than α* and β*.

www.intechopen.com

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization

163

Consider Pt, a version of Pm whose constraints can be partitioned into N subsets:

(14)

Each subset of constraints can be treated as a subproblem, where Subproblem t, t = 1, . . . ,N,

has local state vector of ut mixed variables, and

Here, z(t) includes all the variables that appear in any of the mt local equality constraint

functions

and the r t local inequality constraint functions

. Since the partitioning is by constraints, z(1), . . . , z(N) may

overlap with each other. Further, z(g) includes all the variables that appear in any of the p

global equality constraint functions H = (H1, . . . ,Hp)T and the q global inequality constraint

functions G = (G1, . . . , Gq)T.

We first define N m(z), the mixed neighborhood of z for Pt, and decompose the ESPC in (13)

into a set of necessary conditions that collectively are sufficient. Each partitioned ESPC is
then satisfied by finding an ESP of the corresponding subproblem, and any violated global
constraints are resolved by finding some appropriate penalties.

Definition 6. the mixed neighborhood of z for Pt when partitioned by its constraints,

is:

(15)

where is the mixed neighborhood of z(t) (see Definition 2).

Intuitively, is separated into N neighborhoods, where the tth neighborhood only

perturbs the variables in z(t) while leaving those variables in z\z(t) unchanged.

Without showing the details, we can consider Pt as a MINLP and apply Theorem 1 to derive
its ESPC. We then decompose the ESPC into N necessary conditions, one for each
subproblem, and an overall necessary condition on the global constraints across the
subproblems. We first define the penalty function for Subproblem t.
Definition 7. Let be the sum of the transformed

global constraint functions weighted by their penalties, where
are the penalty vectors for the global

constraints. Then the penalty function for Pt in (14) and the corresponding penalty function
in Subproblem t are defined as follows:

(16)

www.intechopen.com

 Simulated Annealing

164

 (17)

where are the

penalty vectors for the local constraints in Subproblem t.

Theorem 2. Partitioned necessary and sufficient ESPC on CLMm of Pt [25]. Given the

ESPC in (13) can be rewritten into N + 1 necessary conditions that, collectively, are

sufficient:

(18)

 (19)

for any

and for all

Theorem 2 shows that the original ESPC in Theorem 1 can be partitioned into N necessary
conditions in (18) and an overall necessary condition in (19) on the global constraints across
the subproblems. Because finding an ESP to each partitioned condition is equivalent to
solving a MINLP, we can reformulate the ESP search of the tth condition as the solution of
the following optimization problem:

 subject to

(20)

The weighted sum of the global constraint functions in the objective of (20) is important

because it leads to points that minimize the violations of the global constraints. When γT and

┟T are large enough, solving ()t

t
P will lead to points, if they exist, that satisfy the global

constraints. Note that ()t

t
P is very similar to the original problem and can be solved by the

same solver to the original problem with some modifications on the objective function to be
optimized.
In summary, we have shown in this section that the search for a CLMm of Pm is equivalent to
finding an ESP of the corresponding penalty function, and that this necessary and sufficient
condition can be partitioned into multiple necessary conditions. The latter result allows the
original problem to be decomposed by its constraints to multiple subproblems and to the
reweighting of those violated global constraints defined by (19). The major benefit of this
decomposition is that each subproblem involves only a fraction of the original constraints
and is, therefore, a significant relaxation of the original problem with much lower
complexity. The decomposition leads to a large reduction in the complexity of the original
problem if the global constraints is small in quantity and can be resolved efficiently. We
demonstrate in Section 5 that the number of global constraints in many benchmarks is
indeed small when we exploit the locality of the constraints. In the next section, we describe
our extensions to simulated annealing for finding ESPs.

www.intechopen.com

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization

165

3. Simulated annealing for constrained optimization

In this section, we present three algorithms for finding ESPs: the first two implementing the
results in Theorems 1 and 2, and the third extending the penalty search algorithms in
Section 2.1. All three methods are based on sampling the search space of a problem during
their search and can be applied to solve continuous, discrete, and mixed-integer

optimization problems. Without loss of generality, we only consider Pm with equality

constraints, since an inequality constraint gj(z) ≤ 0 can be transformed into an equivalent

equality constraint gj(z)+ = 0.

3.1 Constrained simulated annealing (CSA)

Figure 1 presents CSA, our algorithm for finding an ESP whose (z*, α**)T satisfies (13). In

addition to probabilistic descents in the z subspace as in SA [18], with an acceptance

probability governed by a temperature that is reduced by a properly chosen cooling
schedule, CSA also does probabilistic ascents in the penalty subspace. The success of CSA
lies in its strategy to search in the joint space, instead of applying SA to search in the
subspace of the penalty function and updating the penalties in a separate phase of the
algorithm. The latter approach would be taken in existing static and the dynamic penalty
methods discussed in Section 2.1. CSA overcomes the limitations of existing penalty
methods because it does not require a separate algorithm for choosing penalties. The rest of
this section explains the steps of CSA [30, 28].

Figure 1. CSA: Constrained simulated annealing (see text for the initial values of the
parameters). The differences between CSA and SA lie in their definitions of state z,

neighborhood N m(z), generation probability G(z, z′) and acceptance probability AT (z, z′).

Line 2 sets a starting point z ← (z, α)T , where z can be either user-provided or randomly

generated (such as using a fixed seed 123 in our experiments), and α is initialized to zero.

Line 3 initializes control parameter temperature T to be so large that almost any trial point z′
will be accepted. In our experiments on continuous problems, we initialize T

by first randomly generating 100 points of x and their corresponding neighbors

www.intechopen.com

 Simulated Annealing

166

x′ ∈ N c(x) in close proximity, where |x′i−xi| ≤ 0.001, and then setting

 Hence, we use a large initial T if the function

is rugged is large), or the function is not rugged but its

constraint violation (|hi(x)|) is large. We also initialize κ to 0.95 in our experiments.

Line 4 sets the number of iterations at each temperature. In our experiments, we choose NT ←

ζ (20n + m) where ζ ← 10(n + m), n is the number of variables, and m is the number of

equality constraints. This setting is based on the heuristic rule in [9] using n +m instead of n.

Line 5 stops CSA when the current z is not changed, i.e., no other z′ is accepted, in two

successive temperature changes, or when the current T is small enough (e.g. T < 10−6).

Line 7 generates a random point z′ ∈ N m(z) from the current , where

Λ = Rm
 is the space of the penalty vector. In our implementation, N m(z) consists of (z′, α)T

and (z, α′)T , where z′∈ (see Definition 1), and α′ ∈ is a point neighboring to α

when h(z) ≠ 0:

 (21)

and (22)

According to this definition, αi is not perturbed when hi(z) = 0 is satisfied.

G(z, z′), the generation probability from z to z′ ∈N m(z), satisfies:

(23)

Since the choice of G(z, z′) is arbitrary as long as it satisfies (23), we select z′ in our

experiments with uniform probability across all the points in N m(z), independent of T :

(24)

As we perturb either z or α but not both simultaneously, (24) means that z′ is generated

either by choosing z′ ∈ randomly or by generating α′ uniformly in a predefined range.

Line 8 accepts z′ with acceptance probability AT (z, z′) that consists of two components,

depending on whether z or α is changed in z′:

(25)

www.intechopen.com

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization

167

The acceptance probability in (25) differs from the acceptance probability used in

conventional SA, which only has the first case in (25) and whose goal is to look for a global

minimum in the z subspace. Without the α subspace, only probabilistic descents in the z

subspace are carried out.

Figure 2. CPSA: Constraint-partitioned simulated annealing.

In contrast, our goal is to look for an ESP in the joint Z × Λ space, each existing at a local

minimum in the z subspace and at a local maximum in the α subspace. To this end, CSA

carries out probabilistic descents of with respect to z for each fixed α. That is,

when we generate a new z′ under a fixed α, we accept it with probability one when

is negative; otherwise, we accept it with probability

. This step has exactly the same effect as in conventional SA; that is, it performs

descents with occasional ascents in the z subspace.

However, descents in the z subspace alone will lead to a local/global minimum of the

penalty function without satisfying the corresponding constraints. In order to satisfy all the

constraints, CSA also carries out probabilistic ascents of with respect to α for

each fixed z in order to increase the penalties of violated constraints and to force them into

satisfaction. Hence, when we generate a new α′ under a fixed z, we accept it with probability

one when is positive; otherwise, we accept it with

probability . This step is the same as that in conventional SA when performing

ascents with occasional descents in the α subspace. Note that when a constraint is satisfied,

the corresponding penalty will not be changed according to (22).

Finally, Line 10 reduces T by the following cooling schedule after looping NT times at given T :

 (26)

www.intechopen.com

 Simulated Annealing

168

At high T, (25) allows any trial point to be accepted with high probabilities, thereby
allowing the search to traverse a large space and overcome infeasible regions. When T is
reduced, the acceptance probability decreases, and at very low temperatures, the algorithm
behaves like a local search.

3.2 Constraint-Partitioned Simulated Annealing (CPSA)
We present in this section CPSA, an extension of CSA that decomposes the search in CSA
into multiple subproblems after partitioning the constraints into subsets. Recall that,
according to Theorem 2, Pt in (14) can be partitioned into a sequence of N subproblems
defined in (20) and an overall necessary condition defined in (19) on the global constraints
across the subproblems, after choosing an appropriate mixed neighborhood. Instead of
considering all the constraints together as in CSA, CPSA performs searches in multiple
subproblems, each involving a small subset of the constraints. As in CSA, we only consider
Pt with equality constraints.
Figure 2 illustrates the idea in CPSA. Unlike the original CSA that solves the problem as a

whole, CPSA solves each subproblem independently. In Subproblem t, t = 1, ...,N, CSA is

performed in the (z(t), α(t))T subspace related to the local constraints h(t)(z(t)) = 0. In

addition, there is a global search that explores in the (z(g),γ)T subspace on the global

constraints H(z) = 0. This additional search is needed for resolving any violated global

constraints.

Figure 3. The CPSA search procedure.

Figure 3 describes the CPSA procedure. The first six lines are similar to those in CSA.
To facilitate the convergence analysis of CPSA in a Markov-chain model, Lines 7-14
randomly pick a subproblem for evaluation, instead of deterministically enumerating the
subproblems in a round-robin fashion, and stochastically accept a new probe using an
acceptance probability governed by a decreasing temperature. This approach leads to a
memoryless Markovian process in CPSA.

www.intechopen.com

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization

169

Line 7 randomly selects Subproblem i, i = 1 . . . ,N +1, with probability Ps(t), where Ps(t) can

be arbitrarily chosen as long as:

(27)

When t is between 1 and N (Line 8), it represents a local exploration step in Subproblem t. In

this case, Line 9 generates a trial point from the current point

 using a generation probability G(t)(z, z′) that can be arbitrary as long as the

following is satisfied:

(28)

The point is generated by perturbing z(t) and α(t) in their neighborhood :

 (29)

(30)

and is defined in (15) and This means that z′ ∈ only differs

from z in z(t) or α(t) and remains the same for the other variables. This is different from CSA

that perturbs z in the overall variable space. As in CSA, αi is not perturbed when hi(z(t)) = 0

is satisfied. Last, Line 10 accepts z′ with the Metropolis probability AT (z, z′) similar to that in

(25):

(31)

When t = N + 1 (Line 11), it represents a global exploration step. In this case, Line 12

generates a random trial point using a generation probability G(g)(z, z′)

that satisfies the condition similar to that in (28). Assuming
1m

N (z(g)) to be the mixed

neighborhood of z(g) and Λ(g) = Rp, z′ is obtained by perturbing z(g) and γ in their

neighborhood :

 (32)

(33)

www.intechopen.com

 Simulated Annealing

170

 (34)

Again, z′ is accepted with probability AT (z, z′) in (31) (Line 13). Note that both (z)

and ensure the ergodicity of the Markov chain, which is required for achieving

asymptotic convergence.
When compared to CSA, CPSA reduces the search complexity through constraint

partitioning. Since both CSA and CPSA need to converge to an equilibrium distribution of

variables at a given temperature before the temperature is reduced, the total search time

depends on the convergence time at each temperature. By partitioning the constraints into

subsets, each subproblem only involves an exponentially smaller subspace with a small

number of variables and penalties. Thus, each subproblem takes significantly less time to

converge to an equilibrium state at a given temperature, and the total time for all the

subproblems to converge is also significantly reduced. This reduction in complexity is

experimentally validated in Section 5.

3.3 Greedy ESPC Search Method (GEM)
In this section, we present a dynamic penalty method based on a greedy search of an ESP.

Instead of probabilistically accepting a probe as in CSA and CPSA, our greedy approach

accepts the probe if it improves the value of the penalty function and rejects it otherwise.

One simple approach that does not work well is to gradually increase α** until α** > α*,

while minimizing the penalty function with respect to z using an existing local-search

method. This simple iterative search does not always work well because the penalty

function has many local minima that satisfy the second inequality in (13), but some of these

local minima do not satisfy the first inequality in (13) even when α** > α*. Hence, the search

may generate stationary points that are local minima of the penalty function but are not

feasible solutions to the original problem.

To address this issue, Figure 4 shows a global search called the Greedy ESPC Search Method
[32] (GEM). GEM uses the following penalty function:

(35)

Lines 5-8 carries out Ng iterative descents in the z subspace. In each iteration, Line 6

generates a probe z′ ∈ neighboring to z. As defined in (24) for CSA, we select z′ with

uniform probability across all the points in . Line 7 then evaluates L g ((z′, α)T) and

accepts z′ only when it reduces the value of L g . After the Ng descents, Line 9 updates the

penalty vector α in order to bias the search towards resolving those violated constraints.

When α** reaches its upper bound during a search but a local minimum of L g does not

correspond to a CLMm of Pm, we can reduce α** instead of restarting the search from a new

starting point. The decrease will change the terrain of L g and “lower” its barrier, thereby

www.intechopen.com

Theory and Applications of Simulated Annealing for Nonlinear Constrained Optimization

171

allowing a local search to continue in the same trajectory and move to another local

minimum of L g . In Line 10, we reduce the penalty value of a constraint when its maximum

violation is not reduced for three consecutive iterations. To reduce the penalties, Line 11

multiplies each element in α by a random real number uniformly generated between 0.4 to

0.6. By repeatedly increasing α** to its upper bound and by reducing it to some lower
bound, a local search will be able to escape from local traps and visit multiple local minima
of the penalty function. We leave the presentation of the parameters used in GEM and its
experimental results to Section 5.

Figure 4. Greedy ESPC search method (GEM).

4. Asymptotic convergence of CSA and CPSA

In this subsection, we show the asymptotic convergence of CSA and CPSA to a constrained
global minimum in discrete constrained optimization problems. Without repeating the
definitions in Section 1, we can similarly define a discrete nonlinear programming problem

(Pd), a discrete neighborhood (N d(y)), a discrete constrained local minimum (CLMd), a

discrete constrained global minimum (CGMd), and a penalty function in discrete space (Ld).

4.1 Asymptotic convergence of CSA
We first define the asymptotic convergence property. For a global minimization problem, let

Ω be its search space, Ωs be the set of all global minima, and ω(j) ∈ Ω, j = 0, 1, . . . , be a

sequence of points generated by an iterative procedure ψ until some stopping conditions

hold.

Definition 8. Procedure ψ is said to have asymptotic convergence to a global minimum, or

simply asymptotic convergence [2], if ψ converges with probability one to an element in Ωs;

that is, lim (()) 1
s

j
P jω→∞ ∈Ω = , independent of ω (0), where P(w) is the probability of event w.

In the following, we first state the result on the asymptotic convergence of CSA to a CGMd of

Pd with probability one when T approaches 0 and when T is reduced according to a specific

cooling schedule. By modeling CSA by an inhomogeneous Markov chain, we show that the

www.intechopen.com

Thank You for previewing this eBook
You can read the full version of this eBook in different formats:

 HTML (Free /Available to everyone)

 PDF / TXT (Available to V.I.P. members. Free Standard members can
access up to 5 PDF/TXT eBooks per month each month)

 Epub & Mobipocket (Exclusive to V.I.P. members)

To download this full book, simply select the format you desire below

http://www.free-ebooks.net/

