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1. Introduction 

This chapter details similarity discriminant analysis (SDA), a new framework for similarity-
based classification. The two defining characteristics of the SDA classifica- tion framework 
are similarity-based and generative. The classifiers in this framework are similarity-based, 
because they classify based on the pairwise similarities of data samples, and they are 
generative, because they build class-dependent probability models of the similarities 
between samples. Similarity-based classifiers already exist; classifiers based on generative 
models already exist. SDA is a new framework for classification comprising classifiers that 
are both similarity-based and generative. 
Within the general SDA framework, this chapter describes several families of classifiers: the 
SDA classifier, the local SDA classifier, and the mixture SDA classifier. The SDA classifier is at 
the foundation of SDA. It classifies based on the class-conditional generative models of the 
similarity of the samples to representative class prototypes, or centroids. The SDA 
framework is introduced, developed, and discussed with the aid of this centroid-based SDA 
classifier. Then, the centroid-based SDA classifier is generalized beyond class centroids to 
arbitrary class-descriptive statistics. Other possible statistics are described, illustrating the 
power and generality of the SDA framework. 
The local SDA classifier is a local version of the SDA classifier. It builds similarity-based 
class-conditional generative models within a neighborhood of a test sample to be classified. 
The local class models are endowed with low bias and retain the powerful quality of 
interpretability associated with generative probability models. Local SDA is a consistent 
classifier, in the sense that its error rate converges to the Bayes error rate, which is the best 
possible error rate attainable by a classifier. 
The mixture SDA classifier draws from the well-established metric learning mixture model 
research. It generalizes the single-centroid SDA classifier to a mixture of single-centroid 
SDA components. The mixture SDA classifier can be trained with an expectation-
maximization (EM) algorithm which parallels the standard EM approach for the well-
known Gaussian mixture models. 
The problem of classifying samples based only on their pairwise similarities may be divided 
into two sub-problems: measuring the similarity between samples and classifying the 
samples based on their pairwise similarities. It is beyond the scope of this chapter to discuss 
exhaustively and in detail various ways to measure similarity and various similarity-based O
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classifiers. The reader is referred to the references for more details; here, only a brief 
summary of relevant techniques is provided 

1.1 Measuring similarity 
Judging similarity between samples characterized by many disparate data types poses 
challenges of data representation and quantitative comparison. For example, modern 
databases store information from disparate data sources in different formats: multimedia 
databases store audio, video and text data; proteomics databases store information on 
proteins, genetic sequences, and related annotations; internet traffic databases store mouse 
click histories, user profiles, and marketing rules; homeland security databases may store 
data on individuals and organizations, annotations from intelligence reports, and maritime 
shipping records. These database objects, or samples, are described by both numerical and 
non-numerical data. For example, a security database might store cell phone records in 
textual form and voice parameters for speaker recognition in numerical form. Representing 
all these different data types with continuous-valued numbers in a geometric feature space 
is not appropriate. Thus, current metric space classifiers which rely on metric similarity 
functions may not be applicable. 
Furthermore, in some applications, only the pairwise similarities may be observed, and the 
underlying features may be inaccessible. For example, one of the datasets discussed in this 
chapter consists of human-judged similarities between pairs of sonar echoes. For this 
dataset, the putative perceptual features from which the human similarity ratings are 
generated are unknown - indeed eliciting the features remains an ongoing research problem 
(Philips et al., 2006) - but the similarity ratings are nonetheless successfully used for 
classification. In many applications, the similarity relationship between samples may lack 
the metric properties usually associated with distance (minimality, symmetry, triangle 
inequality); thus, using a metric function to express the pairwise similarities is suboptimal. 
Similarities are more general than distances and require more general functions than metrics 
(Tversky, 1977). Several researchers have addressed the problem of measuring similarity by 
rpoposing several simialrity measures. Psychologists, leacd by Tversky, have proposed 
models of similarity that take into account context and the non-metric way in which humans 
judge the similarity between complex objects (Tversky, 1977; Tversky & Gati, 1978; Gati & 
Tversky, 1984; Sattath & Tversky, 1987). The value difference metric (VDM) was originally 
designed with the goal of improving nearest-neighbor classification (Stanfill & Waltz, 1986) 
of text documents, and subsequent improvements extended it to classification of objects 
characterized by both textual and numerical features (Wilson & Martinez, 1997; Cost & 
Salzberg, 1993). Lin proposed an information-theoretic similarity (Lin, 1998) for document 
retrieval; (Cazzanti & Gupta, 2006) proposed the residual entropy similarity measure by 
extending Tversky's psychological similarity models with information-theoretic notions, and 
showed that it strongly takes into account the context in which the similarity is being 
evaluated. More comprehensive reviews of similarity measures appear in (Santini & Jain, 
1999) and (Everitt & Rabe-Hesketh, 1997). 

1.2 Similarity-based classifiers 
Similarity-based classifiers are defined as those classifiers that require only a pairwise 
similarity - a description of the samples themselves is not needed. Similarity-based 
classifiers classify test samples given a labeled set of training samples, the pairwise 
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similarity values of the training samples, and the similarity of the test sample to the training 
samples. If the description of the samples in terms of feature vectors is available, an existing 
or ad hoc similarity function that maps any two samples to a similarity value may be used 
(Bicego et al., 2006; Pekalska et al., 2001; Jacobs et al., 2000; Hochreiter & Obermayer, 2006). 
Among the existing similarity-based classifiers, the simplest method is the nearest neighbor 
classifier, which determines the most similar training sample z to the test sample x, and 
classifies x as z’s class: 

 
(1) 

where h is the set of training samples from class h. More generally, the k-nearest neighbor 
classifier (k-NN) determines a neighborhood of k most similar training samples to the test 
sample x, and classifies x as the most-frequently occurring class label among the neighbors. 
Experiments have shown that nearest neighbors can perform well on practical similarity-
based classification tasks (Cost & Salzberg, 1993; Pekalska et al., 2001; Simard et al., 1993; 
Belongie et al., 2002). For example, nearest neighbor classifiers using a tangent distortion 
metric and a shape similarity metric have both been shown to achieve very low error on the 
MNIST character recognition task. 
Condensed near-neighbor strategies replace the set of training samples for each class with a 
set of prototypes for that class. Usually the prototype set is an edited set of the original 
training samples (also called edited nearest neighbors), but the prototypes do not need to be 
from the original training set. Let ch be the number of the prototypes {µhl} for class h; then, 
the condensed nearest neighbor rule is to classify a test sample x as the class of the 
prototype to which it is most similar, 

 

(2) 

Many authors have considered strategies for condensing near-neighbors for similarity-based 

classification to increase classification speed, decrease the required memory, remove 

outliers, and possibly attain better performance (Weinshall et al., 1999; Jacobs et al., 2000; 

Lam et al., 2002; Pekalska et al., 2006; Lozano et al., 2006). A well-known strategy for 

condensing nearest neighbors in non-metric spaces is the k-medoids algorithm (Hastie et al., 

2001). Given a set of ch candidate prototypes selected from h, the remaining training 

samples z ∈ h are assigned to their nearest (most similar) prototype, so that the set h of all 

training samples from class h is partitioned in ch mutually-exclusive subsets { hl}, and each 

hl is uniquely associated with candidate prototype µhl. Then, the lth prototype for the hth 

class is updated according to the standard maximum similarity update rule, which selects 

the new µhl as the training sample in hl which is most similar to all other samples in hl, 

 
(3) 

The training samples are then reassigned to the updated prototypes, and the update rule (3) 
is repeated. The reassignment and update steps are repeated until a predetermined 
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maximum number of iterations is reached or until the updated prototypes  = µhl for all h 

and l. The number of prototypes in each class ch is determined by cross-validation; the initial 
prototypes {µhl} are selected randomly from the training set. 
An extreme form of condensed near-neighbors is to replace each class's training samples by 
one prototypical sample, often called a centroid. The resulting nearest centroid classifier can 
be considered a simple parametric model (Weinshall et al., 1999), though it lacks a 
probabilistic structure. Let s(x, z) be the similarity between a sample x and a sample z, and 
let there be a finite set of classes 1, 2, ... ,G. The nearest centroid approach classifies x as the 
class 

 
(4) 

where µh is the representative centroid for the class h. A standard definition for the centroid 
of a set of training samples is the training sample that has the maximum total similarity to 
all the training samples of the same class (Weinshall et al., 1999; Jacobs et al., 2000): 

 
(5) 

A variation of the nearest centroid classifier is the local nearest centroid classifier, which is 
an analog to the local nearest means classifier proposed by Mitani and Hamamoto (Mitani & 
Hamamoto, 2006, 2000). In this variant, the class centroids (5) are computed from a local 
neighborhood of each test point x; they are not computed from the entire training set. The 
neighborhood may be defined in many ways. The most common definition is the k-nearest 
neighbors. In this case, local nearest centroid is like the k-NN classifier, except that it 
classifies x as the class of its nearest centroid where the centroids are computed from the k-
nearest neighbors of x. 
The nearest centroid classifier is analogous to the nearest-mean classifier in Euclidean space, 

which is the optimal Euclidean-based classifier if one assumes that the class-conditional 

distributions are Gaussian, the class priors are equal, and that each class covariance is the 

identity matrix (Duda et al., 2001; Hastie et al., 2001). 

2. Similarity discriminant analysis 

In standard metric learning, quadratic discriminant analysis (QDA) is a generative classifier 

that generalizes the nearest-mean classifier by modeling each class-conditional distribution 

as a Gaussian (Duda et al., 2001). Analogously, SDA is a generative similarity-based 

classifier that generalizes the nearest-centroid classifier (Weinshall et al., 1999) by modeling 

each class-conditional distribution with a parametric probability model (Cazzanti et al.; 

Gupta et al., 2007). The SDA class-conditional probability models have exponential form, 

because they are derived as the maximum entropy distributions subject to constraints on the 

mean similarities of the data to the class centroids. As with other parametric approaches to 

classification, the resulting log-linear SDA classifier is powerful when it effectively models 

the true generating distribution. This section introduces SDA and shows how it classifies; 

then, it extends SDA from using class centroids to using arbitrary descriptive statistics to 

discriminate between the classes, including continuous-valued statistics. 
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2.1 A generative centroid-based classifier 
Assume a class centroid µh has been determined for the hth class, where h = 1, ..., G. A 

problem with the nearest centroid classifier given in (4) is that it does not take into account 

the variability of the similarities to the centroid within a class. To take into account this 

variability, first consider a simple generalization of nearest centroid, here called the adjusted 

nearest centroid classifier : classify a test sample x as class ŷ  where 

 
(6) 

and where s hh is the average similarity of class h samples to the class h centroid, 

 

where nh = │ h│. The adjusted nearest centroid classifier is analogous to the one-

dimensional Gaussian rule of classifying based on the the variance-weighted distances to 

the class means, ║x- μ# h║/σ# h, where x, μ# h, σ# h ∈ R. The adjusted nearest centroid 

classifier is more flexible than the nearest centroid classifier, but lacks a probabilistic 

structure, and takes into account only the similarity of a sample to one class centroid. 
Thus, a generative centroid-based classifier that models the probability distribution of the 

test sample similarity statistics s(x, µh) for each h is proposed. Begin with the Bayes classifier 

(Hastie et al., 2001), which assigns a test sample x the class ŷ  that minimizes the expected 

misclassification cost, 

 

(7) 

where C(f, ) is the cost of classifying the test sample x as class f if the true class is  and 

P( │x) is the probability that sample x belongs in class . In practice the distribution 

P( │x) is generally unknown, and thus the Bayes classifier of (7) is an unattainable ideal. 

Assume that all test and training samples come from some abstract space of samples , 

which might be an ill-defined space, such as  is the set of all amino acids, or  is the set of 

all terrorist events, or  is the set of all women who gave birth to twins. Let x, µh, z ∈ , and 

let the similarity function be some function s : ×  →Ω, where Ω ⊂ R. If the set of possible 

samples  is finite, then the space of the pairwise similarities Ω will also be finite, and hence 

discrete. For simplicity, in this section assume that Ω is a finite discrete space. Continuous 

and possibly infinite spaces B, Ω are briefly discussed in Section 2.2.3. 
Consider a random test sample X with random class label Y, where x will denote a 

realization of X. Assume that the relevant information about X’s class label is captured by 

the set (X) of G descriptive statistics 
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That is, the relevant information about x is captured by its similarity to each class centroid. 
Under this assumption, given a particular test sample x, the classification rule (7) becomes: 

classify x as class ŷ  that solves 
 

 
Using Bayes rule, this is equivalent to the problem 

 

(8) 

Note that P( (x)│Y = ) is the probability of seeing a particular set of similarities between 
the test sample x and the G class centroids {µ1, µ2, ...,  µG} given that x is a class  sample. 
Next, assume that each unknown class-conditional distribution P( (x)│Y = ) has the same 
average value as the training sample data from class g. That is, given a random test sample 
X there will be a random similarity s(X, µh); constrain the class-conditional distribution  
P( (x)│Y = ) such that 

 

(9) 

holds for each  and h where ng is the number of training samples of class . Each constraint 
requires that the class-conditional expectation of one of the elements of (X) is equal to the 
maximum likelihood estimate of that element given the training data. This makes for G 
constraints for each class-conditional distribution, for a total of G×G constraints because 
there are G class-conditional distributions. Given these constraints, there is some compact 
and convex feasible set of class-conditional distributions. A feasible solution will always 
exist because the constraints are based on the data. 
As prescribed by Jaynes' principle of maximum entropy (Jaynes, 1982), a unique class-
conditional joint distribution is selected by choosing the maximum entropy solution that 
satisfies (9). Maximum entropy distributions have the maximum possible uncertainty, such 
that they are as uniform as possible while still satisfying given constraints. Given a set of 
moment constraints, the maximum entropy solution is known to have exponential form 
(Cover & Thomas, 1991). For example, in standard metric learning, the Gaussian class-
conditional distribution model used in LDA and QDA is the maximum entropy distribution 
given a specific mean vector and covariance matrix (Cover & Thomas, 1991). 
The maximum entropy distribution that satisfies the moment constraints specified in (9) is 

 
(10)

where {γg, λg1, λg2, ... , λgG} are a unique set that ensures that the constraints (9) are satisfied 

and that P̂ ( (x)│Y = ) is non-negative and normalized. Rewrite equation (10) as 
 

 

(11)
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where . Let 
 

 
then (11) can be written 

 

That is, under the maximum entropy assumption, the joint distribution on (x) is the 
product of the marginal distributions on each similarity statistic comprising the set (X). 
Thus, the similarity statistics are conditionally independent given the class label under this 
model. Although one does not expect this conditional independence to be strictly valid, the 
hypothesis is that it will be an effective model, just as the naive Bayes' model that features 
are independent is optimistic but useful. 
Substituting the maximum entropy solution (10) into (8) yields the classification rule: 

classify x as the class ŷ  which solves 

 

(12)

To solve for the parameters {λgh, γgh}, one solves the G constraints individually for λgh. Then 

given {λgh}, the {γgh} are trivially found using the normalization constraint. Solving for λgh is 
straightforward; for example, one uses the Nelder-Mead optimizer built into Matlab 
(version 15) in the fminsearch()function (Mat). This is the method used throughout this 
work. As an alternative, one may find the probability mass function with maximum 
entropy, subject to the constraints, without a priori knowledge that the solution is 
exponential. 
The classifier given in (12) is termed the similarity discriminant analysis (SDA). 

2.2 General generative models for similarity-based classification 
The previous section introduced SDA for the case when the descriptive statistics are the 
similarities of the samples to the class centroids. This section generalizes SDA to arbitrary 
descriptive statistics (x) which can be used to discriminate different classes and describes 
the resulting general generative model for classifying with arbitrary statistics. 

2.2.1 Descriptive statistics 
Several possibilities for the descriptive statistics (x) are described below.  

• Centroid Definitions - A standard centroid definition was given in (5). Another choice is 
to allow a class prototype that is not constrained to be a training sample, 

 
(13)

In this case the solution  requires a description of the entire space of possible samples 

. In practice, one may not know the entire sample space , only the training samples 
, so it may not be possible to calculate . 
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A third definition of a class prototype is based on Tversky's analysis of similarity-based 
near-neighbor relationships (Tversky & Hutchinson, 1986; Schwartz & Tversky, 1980), 
and takes into account the similarity-based ranks of a training sample's near-neighbors. 

Define the neighborhood (z) ⊆  of a sample z as the set of training samples whose 
nearest neighbor in similarity space is z. The popularity of z is the size of its 
neighborhood │ (z)│. The class centroid is the sample with the highest popularity, 
that is, 

 
(14)

This centroid is the training sample that is most often the closest neighbor of the 
training samples in the class. Ties in popularity are broken by selecting the sample with 
the highest total similarity to its neighbors. 

• Higher Order and Non-Centroidal Descriptive Statistics - Given a set of class centroids 

{µh}, higher-order statistics could be used as, or added to, the set of descriptive statistics 

(X), such as (s(X, µh) - E[s(X, µh)])
2, or cross-class statistics, such as (s(X, µh) - E[s(X, 

µg)])
2. Or, instead of the centroid-based statistics fs(X, µh)g, it might be more appropriate 

to use the nonparametric statistics formed by the total pairwise similarity for each class 

h, such that the hth descriptive statistic in test set (X) is s(X, z). 

• Nearest Neighbor Similarity - A descriptive statistic that is not centroid-based is the nearest 
neighbor similarity: a test sample's similarity to its most similar training sample. Given a 

sample x and the training samples z ∈ , the nearest neighbor similarity is defined 

 
(15)

The SDA classifier based on nearest neighbor similarity, denoted by nnSDA, may be 
viewed as a generalization of the similarity-based nearest neighbor classifier (1-NN) 
defined in 1. That classifier labels x with the same class label as its nearest neighbor 
without making use of any information about its similarity to such nearest neighbor. 
The nnSDA classifier, on the other hand, classifies x as the class of its nearest neighbor 
based on a probabilistic model of snn(x). The probability model is computed with the 
mean-constrained maximum entropy approach of Section 2.1, which results in 
exponential solutions. In this case, the constraint is that the mean of the distribution 
must be the same as the empirical average of the observed nearest neighbor similarities. 
Denote by snn,h(X) the random similarity of a random test sample X to its nearest 
neighbor in class h. For nnSDA, the constraint is written as 

 

(16)

and the classification rule becomes to classify as the class ŷ  that solves 

 

(17)

www.intechopen.com



Similarity Discriminant Analysis 

 

101 

where the parameters λgh and γgh are computed with the same numerical optimization 
method used for SDA. 

As further discussed in the next section, the SDA framework accommodates any desired set 
of descriptive statistics (x): different similarity functions could be mixed, dissimilarities 
and similarities can be mixed, and so on. 

2.2.2 Generative classifier from arbitrary descriptive statistics 
Given an arbitrary set of M descriptive statistics (x), the same reasoning of Section 2.1 
produces a generative similarity-based classifier. First, the assumption is that (x) is 
sufficient information to classify x leads to the classification rule given in (8). Second, for the 

mth descriptive statistic Tm(x) ∈ (x), m = 1, ..., M, one assumes that its mean with respect to 
the class conditional distribution of (x) is equal to the training sample mean: 

 

(18)

Third, given the M×G constraints specified by (18), one estimates the class-conditional 
distribution to be the maximum entropy distribution, 

 

(19)

Substituting the maximum entropy solution (19) into (8) yields the SDA classification rule: 

classify x as the class ŷ  which solves 

 

(20)

The parameters {λgm, γgm} are calculated as in the centroid-based SDA case described in 
Section 2.1. 

2.2.3 Continuous-valued statistics 
The generative classification models presented in this chapter can be extended to the case in 
which the statistics (x) are from a continuous set Ω. This will be the case, for example, 
when using an overlap similarity (e.g. max{x[i], z[i]}) with real-valued features, or when the 
similarity between X and z is the Euclidean distance. Then, the expectation in (18) is a 
normalized integral over the continuous set of possible similarity values. Let a and b denote 
the minimum and maximum possible similarity values (and hence the lower and upper 
bound on the expectation's integral). Then simplifying (18) yields the relationship 

 

(21)
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where
 

. The solution to (21) can be computed numerically. For  the 

special case a = 0 and b = ∞, the solution is  

3. Local SDA 

This chapter introduces local SDA (Cazzanti & Gupta, 2007), a similarity-based classifier that 
is both generative and local. An advantage of generative classifiers is their interpretability: 
classes are modeled by conditional probability distributions which are assumed to have 
generated the observed data. An advantage of local classifiers it that they reduce the 
estimation bias problem which affects generative classifiers. Local SDA combines the 
qualities of both generative and local classifiers. 
For the SDA classifier, the class-conditional generative distributions are exponentials that 
model the similarities between samples - or more generally the descriptive statistics of the 
sample. The exponentials are the maximum entropy distributions subject to constraints on 
the mean values of the similarities. However, when the underlying distributions are 
complex, a particular set of empirical statistics may fail to capture the necessary information 
about a sample’s class membership. In fact, in SDA, constraining the means of the class-
conditional distributions may result in too much model bias, just as the QDA model of one 
Gaussian per class causes model bias (Hastie et al., 2001). In standard metric learning, one 
way to address the bias problem while retaining the advantages of a generative approach is 
to form more flexible Gaussian mixture models. In similarity-based learning, mixture 
models may also be formed; this approach is discussed in Section 4. 
Here, the bias in SDA is addressed by using local classifiers in similarity space. In metric 
learning, one way to avoid the bias problem is to use local classifiers, e.g. k-NN, which 
classify test samples based on the class labels of their nearest neighbors. Local classifiers do 
not estimate probabilistic models for the sample classes and consequently lack the 
interpretability of generative models. Even so, they provide an intuitive framework for 
classification through the concepts of nearest-neighbor and neighborhood. In this chapter, 
SDA is applied to a local neighborhood about the test sample. The resulting local SDA 
classifier trades-off model bias and estimation variance depending on the neighborhood 
size, while retaining the power of a generative classifier. To the author's knowledge, local 
SDA is the first example of a classifier that is both generative and local. The only arguable 
contender is the local nearest- mean classifier (Mitani & Hamamoto, 2000, 2006) for metric 
learning; however that classifier was not proposed as a generative model. 
Local SDA is a straightforward variation of SDA. The local SDA classifier model is that all of 
the relevant information about classifying a test sample x depends only on the k nearest 
(most similar) training samples to x. Thus, the local SDA classifier computes the descriptive 
statistics from a neighborhood of a test sample. More specifically, local SDA is a log-linear 
generative classifier that models the probability distribution of the similarity s(x, µh) 
between the test sample x and the class centroids {µh}, just like SDA. Unlike SDA, the class 
centroids, the class-conditional similarity probability models, and the estimates of the class 
priors are computed from a neighborhood of the test sample rather than from the entire 
training set. Thus, the class centroid definition (5) used for SDA still holds for local SDA; one 
simply redefines h as the subset of the k nearest neighbors from class h. The class priors are 

estimated using normalized class membership counts of the neighbors of x, that is P̂  (Y = h) 
= │ h│/k. The mean similarity constraints (9) for the SDA maximum entropy optimization 
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are formally the same for local SDA, except that the mean is computed from the neighbors 

of test sample x rather than the whole training set. Thus, the optimized parameters λgh and 

γgh are local. Given the set of local class centroids {µh}, the local class priors P̂ (Y = g), and 

the local class-conditional model parameters γgh the local SDA classification rule is identical 
to the SDA rule (12): 

 

A problem can occur if the hth class has few training samples in the neighborhood of test 
sample x. In this case, the local SDA model for class h is difficult to estimate. To avoid this 
problem, if the number of local training samples in any of the classes is very small, for 
example nh < 3, the local SDA classifier reverts to the local nearest centroid classifier. If nh = 0 
so that h is the empty set, then the probability of class h is locally zero, and that class is not 
considered in the classification rule (12). This strategy enables local SDA to gracefully 
handle small k and very small class priors. 
Local classification algorithms have traditionally been weighted voting methods, including 
classifying with local linear regression, which can be formulated as a weighted voting 
method (Hastie et al., 2001). These methods are by their nature non-parametric and their use 
arises in situations when the available training samples are too few to accurately build class 
models. On the other hand, it is known that the number of training samples required by 
nonparametric classifiers to achieve low error rates grows exponentially with the number of 
features (Mitani & Hamamoto, 2006). Thus, when only small training sets are available, 
nonparametric classifiers are negatively impacted by outliers. In 2000, Mitani and 
Hamamoto (Mitani & Hamamoto, 2000, 2006) were the first ones to propose a classifier that 
is both model-based and local. However, they did not develop it as a local generative 
method; instead, they proposed the classifier as a local weighted-distance method. Their 
nearest-means classifier can be interpreted as a local QDA classifier with identity 
covariances. In experiments with simulated and real data sets, the local nearest-means 
classifier was competitive with, and often better than, nearest neighbor, the Parzen classifier, 
and an artificial neural network, especially for small training sets and for high dimensional 
problems. 
Local nearest-means differs from local SDA in several aspects. First, the classifier by Mitani 
and Hamamoto in (Mitani & Hamamoto, 2006) learns a metric problem, not a similarity 
problem: the class prototypes are the local class-conditional means of the features and a 
weighted Euclidean distance is used to classify a test sample as the class of its nearest class 
mean. Second, the neighborhood definition is different than the usual k nearest neighbors: 

they select k nearest neighbors from each class, so that the total neighborhood size is k ×G. 
More recently, it was proposed to apply a support vector machine to the k nearest neighbors 
of the test sample (Zhang et al., 2006). The SVM-KNN method was developed to address the 
robustness and dimensionality concerns that a²ict nearest neighbors and SVMs. Similarly to 
the nearest-means classifier, the SVM-KNN is a hybrid local and global classifier developed 
to mitigate the high variance typical of nearest neighbor methods and the curse-of-
dimensionality. However, unlike the nearest means classifier of Mitani and Hamamoto, 
which is rooted in Euclidean space, the SVM-KNN can be used with any similarity function, 
as it assumes that the class information about the samples is captured by their pairwise 
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similarities without reference to the underlying feature space. Experiments on benchmark 
datasets using various similarity functions showed that SVM-KNN outperforms k-NN and 
its variants especially for cases with small training sets and large number of classes. SVM-
KNN differs from local SDA because it is not a generative classifier. 
Finally, note that different definitions of neighborhood may be used with local SDA. One 
could use the Mitani and Hamamoto (Mitani & Hamamoto, 2006) definition described 
above, or radius-based definitions. For example, the neighborhood of a test sample x may be 

defined as all the samples that fall within a factor of 1+α of its similarity to its most similar 

neighbor, and α is cross-validated. This work employs the traditional definition of 
neighborhood, as the k nearest neighbors. 

3.1 Consistency of the local SDA classifier 
Generative classifiers with a finite number of model parameters, such as QDA or SDA, will 
not asymptotically converge to the Bayes classifier due to the model bias. This section shows 
that, like k-NN, the local SDA classifier is consistent such that its expected classification 
error E[L] converges to the Bayes error rate L* under the usual asymptotic assumptions that 

the number of training samples N → ∞, the neighborhood size k → ∞, but that the 

neighborhood size grows relatively slowly such that k=N → 0. First a lemma is proven that 
will be used in the proof of the local SDA consistency theorem. Also, the known result that 
k-NN is a consistent classifier is reviewed in terms of similarity. 

Let the similarity function be s :  ×  → Ω, where Ω ⊂ R is discrete and let the largest 

element of -Ω be termed smax. Let X be a test sample and let the training samples {X1,X2, ... 

,XN} be drawn identically and independently. Re-order the training samples according to 

decreasing similarity and label them {Z1,Z2, ..., ZN} such that Zk is the kth most similar 

neighbor of X. 
Lemma 1 Suppose s(x,Z) = smax if and only if x = Z and P(s(x,Z) = smax) > 0 where Z is a random 

training sample. Then P(s(x,Zk) = smax) → 1 as k, N →∞ and k/N → 0.  
Proof: The proof is by contradiction and is similar to the proof of Lemma 5.1 in (Devroye et 

al., 1996). Note that s(x,Zk) ≠ smax if and only if 

 

(22)

because if there are less than k training samples whose similarity to x is smax, the similarity of 

the kth training sample to x cannot be smax. The left-hand side of (22) converges to P(s(x,Z) = 

smax) as N→∞ with probability one by the strong law of large numbers, and by assumption 

P(s(x,Z) = smax) > 0. However, the right-hand side of (22) converges to 0 by assumption. 

Thus, assuming s(x,Zk) ≠ smax leads to a contradiction in the limit. Therefore, it must be that 

s(x,Zk) = smax. 

Theorem 1 Assume the conditions of Lemma 1. Define L to be the probability of error for test sample 
X given the training sample and label pairs {(Z1, Y1), (Z2, Y2), ... , (ZN, YN)}, and let L* be the Bayes 

error. If k,N → ∞ and k/N → 0, then for the local SDA classifier E[L] → L*.  

Proof: By Lemma 1, s(x,Zi) = smax for i ≤ k in the limit as N → ∞, and thus in the limit the 
centroid µh of the subset of the k neighbors that are from class h must satisfy s(x, µh) = smax, 
for every class h which is represented by at least one sample in the k neighbors. By definition 
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of the local SDA algorithm, any class h  that does not have at least one sample in the k 

neighbors is assigned the class prior probability P(Y = h ) = 0, so it is effectively eliminated 

from the possible classification outcomes. Then, the constraint (9) on the expected value of 
the class-conditional similarity for every class g that is represented in the k neighbors of x is 

 
(23)

which is solved by the pmf P(s(x, µh)│Y = g) = 1 if s(x, µh) = smax, and zero otherwise. Thus 
the local SDA classifier (12) becomes 

 
(24)

where the estimated probability of each class P̂  (Y = g) is calculated using a maximum 

likelihood estimate of the class probabilities for the neighborhood. Then, P̂  (Y = g) →P(Y = 

g│x) as k →∞ with probability one by the strong law of large numbers. Thus the local SDA 

classifier converges to the Bayes classifier, and the local SDA average error E[L] → L*. 
The known result that k-NN is a consistent classifier can be stated in terms of similarity as a 
direct consequence of Lemma 1: 
Lemma 2 Assume the conditions of Lemma 1 and define L and L* as in Theorem 1. For the 

similarity-based k-NN classifier E[L] →L*. 
Proof. It follows directly from Lemma 1 that within the size-k neighborhood of x, Zi = x for i 

≤k. Thus, the k-NN classifier (1) estimates the most frequent class among the k samples 

maximally similar to x: 

 

The summation converges to the class prior P(Y = g→x) as k →∞ with probability one by the 

strong law of large numbers, and the k-NN classifier becomes that in (24). Thus the 

similarity-based k-NN classifier is consistent. 

4. Mixture SDA 

Like LDA and QDA, basic SDA may be too biased if the similarity space - or more generally 
the descriptive statistics space - is multi-modal. In analogy to metric space mixture models, 
the bias problem in similarity space may be alleviated by generalizing the SDA formulation 
with similarity-based mixture models. In the mixture SDA models, the class-conditional 
probability distribution of the descriptive statistics (x) for a test sample x is modeled as a 
weighted sum of exponential components. Generalizing the single centroid-based SDA 
classifier and drawing from the metric mixture models (Duda et al., 2001; Hastie et al., 2001), 
each class h is characterized by ch centroids {µhl}. The descriptive statistics for test sample x 
are its similarities to the centroids of class h, {s(x, µh1), s(x, µh2), ... , s(x, )}, for each class h. 

The mixture SDA model for the probability of the similarities, assuming that test sample x is 
drawn from class g, is written as 
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(25)

where wghl = 1 and wghl > 0. Then, the SDA classification rule (12) for mixture SDA 

becomes to classify x as the class ŷ  that solves the maximum a posteriori problem 

 

(26)

Note how the mixture SDA generative model (25) parallels the metric mixture formulation 

of Gaussian mixture models (GMMs), with the exponentials  in place of the 

Gaussian components. However, there are deep differences between mixture SDA and 
metric mixture models. In metric learning, the mixtures model the underlying generative 
probability distributions of the features. Due to the curse of dimensionality, high-
dimensional, multi-modal feature spaces require many training samples for robust model 

parameter estimation. For example, for d features, GMMs require that a d × 1 mean vector 

and a d × d covariance matrix be estimated for each component in each class, for a total of  

ch ×(d2 +3d)/2 parameters per mixture. Constraining each Gaussian covariance to be diagonal, 
at the cost of an increased number of mixture components, alleviates the robust estimation 
problem, but does not solve it (Reynolds & Rose, 1995). 
When relatively few training samples are available, robust parameter estimation becomes 

particularly di±cult. In similarity-based learning the modeled quantity is the similarity of a 

sample to a class centroid. The estimation problem is essentially univariate and reduces to 

estimating the exponent λghl in each component of the mixture, for a total of ch × G × 2 

parameters per mixture (the scaling parameter γghl follows trivially). This simpler classifier 

architecture allows robust parameter estimation from smaller training set depending on the 

number of centroids per class, or, more generally, the number of descriptive statistics. 

Another major difference between mixture SDA and metric mixture models is in the number 
of class-conditional probability models that must be estimated. In metric learning, G 
mixtures are estimated, one for each of the G possible classes from which a sample x may be 

drawn. In mixture SDA, G2 mixture models are estimated. Each sample x is hypothesized 
drawn from class g = 1, 2, ...G, and its similarities to each of the G classes are modeled by the 
mixture (25), with h = 1, 2. ...G. When the number of classes grows, or when the number of 
components in each mixture model grows, the quadratic growth in the number of needed 
models presents a challenge in robust parameter estimation, especially when the number of 
available training samples is relatively small. However, this problem is mitigated by the fact 
that the component SDA parameters may be robustly estimated with smaller training sets 
than in metric mixture models due to the simpler, univariate estimation problem at the heart 
of SDA classification. The next section discusses the mixture SDA parameter estimation 
procedure. 

4.1 Estimating the parameters for mixture SDA models 

Computing the SDA mixture model for the similarities of samples x ∈ g to class h requires 
estimating the number of components ch, the component centroids {µhl}, the component 
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weights {wghl} and the component SDA parameters {λghl} and {γghl}. This section describes an 
EM algorithm for estimating these mixture parameters. The algorithm parallels the EM 
approach for estimating GMM parameters (Duda et al., 2001; Hastie et al., 2001); it is first 
summarized below, and then explained in detail in the following sections. 

Let θgh = {{wghl}, {γghl}, {λghl}} for l = 1, 2 ... ch be the set of parameters for the class h mixture 
model to be estimated under the assumption that the training samples zi, for i = 1, 2, ... ng are 
drawn identically and independently. Denote by C a random component of the mixture and 

by P(C = l│s(zi, µhl), θgh) the responsibility (Hastie et al., 2001) of the lth component for the 

ith training sample similarity s(zi, µhl). Also write P(s(zi, µhl)│C = l, θgh) = . 

The proposed EM algorithm for mixture SDA is: 
1. Compute the centroids {µhl} with K-medoids algorithm. 

2. Initialize the parameters {wghl} and the components P(s(zi, µhl)│C = l, θgh). 
3. E step: compute the responsibilities 

 
(27)

4. M step: compute model parameters 

(a) Find the λghl which solves 

 

(28)

(b) Compute the corresponding scaling factor 

 

(29)

(c) Compute the component weights 

 

(30)

5. Repeat E and M steps until convergence criterion is satisfied. 
Note that, just like EM for GMMs, the EM algorithm for mixture SDA involves iterating the 

E step, which estimates the responsibilities, and the M step, which estimates the parameters 

that maximize the expected log-likelihood of the training data. At each iteration of the M 

step, the explicit expression (30) updates the component weights. However, unlike EM for 

GMMs, the update expression for the component parameters (28) is implicit and must be 

solved numerically. Another difference between the GMM and SDA EM algorithms is in 

how the centroids are estimated. For GMMs, the component means {uhl}, which are the 

metric centroids, are updated at each iteration of the M step. For mixture SDA, the centroids 

{µhl} are estimated at the beginning of the algorithm and kept constant throughout the 

iterations. 
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The update expressions for the mixture SDA parameters are derived from the expression of 
the expected log-likelihood of the observed similarities. A standard assumption in EM is 
that the observed data are independent and identically distributed given the class and 
mixture component. For mixture SDA, this assumption means that the training sample 

similarities { g(zi)} = {s(zi, µhl)}, zi ∈ g to the component centroids are identically 
distributed and conditionally independent given the lth class component. Then, the 
expected log-likelihood of { g(zi)} is 

 

(31)

Using the properties of the logarithm and rearranging the terms, L({ g(zi)}│θgh) splits into 

the terms depending on wghl and the terms depending on λghl and γghl: 

 

(32)

The standard EM approach to maximizing (32) is to set its partial derivatives with respect to 
the parameters to zero and solve the resulting equations. This is the approach adopted here 

for estimating the mixture SDA parameters θgh for all g, h. 
The derivation of the expression for the component weights {wghl} follows directly from (32); 
both the derivation of and the final expression for the component weights are identical to 
the metric mixtures case. Section 4.1.1 re-derives the well-known expression for wghl. 
Applying the EM approach, however, does not lead to explicit expressions for {λghl} and 
{γghl}. Instead, it leads to many single-parameter constraint expressions for the mean 
similarities of the training data to the mixture component centroids. These expressions are 
solved with the same numerical solver used in the single-centroid SDA classifier. 

4.1.1 Estimating the component weights 
To compute the log-likelihood-maximizing weights wghl, one uses the standard technique of 
taking the derivative of the log-likelihood with respect to wghl, setting it to zero, and solving 

the resulting expression for wghl. The constraint wghl = 1 is taken into account with the 

Lagrange multiplier η: 

 
which gives the well-known expression for the component weights of a mixture model in 
terms of the responsibilities: 
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(33)

4.1.2 Estimating γghl and λghl 

The same approach used for estimating the component weights {wghl} is adopted to estimate 

the SDA parameters {γghl} and {λghl}: Find the likelihood-maximizing values of the 

parameters by setting the corresponding partial derivatives to zero and solving the resulting 

equations. First, since each γghl is simply a scaling factor that ensures that each mixture 

component is a probability mass function, one rewrites 

 

(34)

where X ∈ g is a random sample from class g, s(X, µhl) is its corresponding random 

similarity to component centroid µhl, and Ω is the set of all possible similarity values. 

Substituting (34) into (32), setting the partial derivative of L({ h(zi)}│θgh) with respect to λghl 

to zero, and rearranging the terms gives 

 

(35)

The first term on the left side of (35) is simply the definition of the expected value of the 
similarity of samples in class g to the lth centroid of class h. Thus, one rewrites (35) 

 

(36)

Expression (36) is an equality constraint on the expected value of the similarity of samples  

zi ∈ g to the component centroids µhl of class h. This is the same type of constraint that must 
be solved in the mean-constrained, maximum entropy formulation of single-centroid SDA 
(9). In (9), the mean similarity of samples from class g to the single centroid of class h is 
constrained to be equal to the observed average similarity. Analogously, in (36), the mean 
similarity of the samples from class g to the lth centroid of class h is constrained to be equal 
to the weighted sum of the observed similarities, where each similarity is weighted by its 

normalized responsibility. To solve for λghl, one uses the same numerical procedure used to 

solve (9) and described in Section 2.1. Thus, solving for all the {λghl} requires solving the  

G ×  ch expressions of (36). 

It is not surprising that taking the EM approach to estimating λghl has lead to the same 
expressions for the mean constraints in the maximum entropy approach to density 
estimation. It is known that maximum likelihood (ML) - the foundation for EM - and 
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