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1. Introduction 

Precise measurement of fluid flow rate is essential in commercial and in process control 
applications. The flow rate can be measured using different principles and devices (Baker, 
2000, Miller, 1996): Orifice, Turbine, Venturi, Nozzle, Target, V-cone, Pitot, Multiport 
averaging, Elbow, Wedge, Laminar flow, Gilfo, Positive displacement, Thermal mass, 
Ultrasonic-time of flight, Variable area, Vortex, Coriolis. The measurement accuracy varies 
from ±5% of rate (Pitot) down to ±0.2% of rate (Coriolis). The Coriolis mass flowmeters are 
generally used to measure the mass flow of liquids but have been also used for the 
measurement of flow of high density gases. The turbine meters are widely used for the 
measurement of the volumetric flow rate of clean gases (±0.5% of rate) and liquids (±1% of 
rate). The flow rate measurements based on orifice meters are less accurate (1-2% URV) but 
the orifice plates are the most widely used devices in natural gas flow rate measurements 
due to their simplicity and robustness. We will here illustrate the thermodynamic effects 
that may cause significant error in measurements of natural gas flow rate based on orifice 
meters. We will also demonstrate how they could be efficiently compensated. 
In measurements based on orifice plates the temperature of the fluid measured upstream of 
the orifice plate is used for the calculation of the flow rate but the fluid temperature is 
preferably measured downstream of the orifice plate (ISO-5167-1, 2003). When a gas is 
forced to flow through an orifice its temperature is changed due to the Joule-Thomson (JT) 
effect. The effect can be generally neglected for low flow rates i.e. for low differential 
pressures measured across the orifice meter (ISO-5167-1, 2003). At higher differential 
pressures and at lower temperatures the flow rate error increases and generally needs to be 
compensated (Marić, 2007). The precise compensation of flow rate error implies double 
calculation of natural gas properties and the flow rate, which extends the calculation time 
significantly and may become impractical for implementation in low-computing-power 
embedded systems. To avoid the computational burden the original high complexity 
models of natural gas properties can be replaced by the corresponding low-complexity 
surrogate models (Marić & Ivek, IEEE, Marić & Ivek, 2010) with no significant deterioration 
of flow rate accuracy. 
Comprehensive presentation of modern methods of estimating the physical properties of 
gases and liquids can be found in (Poling at al., 2000). Formulations explicit in the 
Helmholtz energy have been widely used to represent the properties of natural gas because 
of the ease of calculating all other thermodynamic properties by mathematical 
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differentiation (Lemmon & Starling, 2003, Span & Wagner, 1996, Span & Wagner, 2003). The 
Helmholtz energy is a fundamental thermodynamic property from which all other 
thermodynamic properties can be calculated as derivatives with respect to molar density or 
temperature. The detailed procedure for the calculation of thermodynamic properties based 
on formulations explicit in Helmholtz energy (Lemmon & Starling, 2003) and on AGA-8 
detail characterization equation (Starling & Savidge, 1992) is given in (ISO-207651-1, 2005). 
Here we will elaborate an alternative procedure for the calculation of properties of a natural 
gas that was originally published in the Journal Flow Measurement and Instrumentation 
(Marić, 2005 & 2007). The procedure is derived using fundamental thermodynamic 
equations (Olander, 2007), DIPPR AIChE (DIPPR® Project 801, 2005) generic ideal heat 
capacity equations, and AGA-8 (Starling & Savidge, 1992) extended virial-type equations of 
state. The procedure specifies the calculation of specific heat capacities at a constant 
pressure cp and at a constant volume cv, the JT coefficient μJT, and the isentropic exponent κ 
of a natural gas. The effect of a JT expansion on the accuracy of natural gas flow rate 
measurements will be pointed out. 
The possibilities of using the computational intelligence methods - Artificial Neural 
Networks - ANNs (Ferrari & Stengel, 2005, Wilamowski et al., 2008) and machine learning 
tools - Group Method of Data Handling - GMDH (Ivakhnenko, 1971, Nikolaev & Iba, 2003) 
for meta-modeling the effects of natural gas properties in flow rate measurements (Marić & 
Ivek, 2010) will be illustrated. The practical examples of ANN and GMDH surrogate models 
for the compensation of natural gas flow rate measurement error caused by the 
thermodynamic effects, with the corresponding accuracies and execution times will be 
given. The models are particularly suitable for implementation in low computing power 
embedded systems. 

 
2. A procedure for the calculation of thermodynamic properties of natural gas 

This section summarizes the procedure (Maric, 2007) for the calculation of specific heat 
capacity at constant pressure cp and at constant volume cv, JT coefficient μJT and isentropic 
exponent κ of a natural gas based on thermodynamic equations, AGA-8 extended virial type 
characterization equation (Starling & Savidge, 1992, ISO-12213-2, 2006) and DIPPR generic 
ideal heat capacity equations (DIPPR® Project 801, 2005). First, the relation of the molar heat 
capacity at constant volume to equation of state will be derived. Then the relation will be 
used to calculate a molar heat capacity at constant pressure, which will be then used for the 
calculation of the JT coefficient and the isentropic exponent. The total differential for 
entropy (Olander, 2007), related to temperature and molar volume, is: 

m
Tmv

dv
v
sdT

T
sds

m

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

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where s denotes entropy, T denotes temperature and mv  is a molar volume of a gas. By 
dividing the fundamental differential for internal energy mdvpdsTdu   by dT while 
holding mv  constant the coefficient of dT in Eq. (1) becomes Tc vm /,  since the molar heat at 

constant volume is defined by  
mvvm Tuc , . The Maxwell relation 

 

   
mvTm Tpvs  , is used to substitute the coefficient of mdv . Finally, the Eq. (1) 

becomes: 
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 Similarly, starting from a total differential for entropy related to temperature and 
pressure (Olander, 2007)     dppsdTTsds Tp   and by dividing the fundamental 

differential for enthalpy dpvdsTdh m   by dT while holding p constant, the coefficient 
of dT in total differential becomes Tc pm /,  since the molar heat capacity at constant pressure 

is defined by:  ppm Thc , . The Maxwell relation    pmT Tvps   is used to 

substitute the coefficient of dp and the following relation is obtained: 

dp
T
vdT
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c
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p
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 , , (3) 

Subtracting Eq. (2) from Eq. (3), then dividing the resulting equation by mdv  while holding 
p constant and finally inverting the partial derivative  pmvT   the following equation is 

obtained: 

mvp

m
vmpm T

p
T
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 ,, . (4) 

A total differential of thermodynamic property, Eqs. (2) and (3), must be the exact 
differential i.e. the order of forming the mixed second derivative is irrelevant. The partial 
derivative of the first coefficient with respect to the second variable equals to the partial 
derivative of the second coefficient with respect to the first variable. By applying this 
property to Eq. (2) and by assuming T to be the first variable with the corresponding 
coefficient Tc vm, and mv  the second variable with the corresponding coefficient  

mv
Tp   

we obtain: 
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, , (5) 

 
The Eq. (5) can be rewritten in the following integral form: 
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where vImc , , mIv  and m  denote the ideal molar heat capacity at constant volume and the 
corresponding molar volume of ideal and real gas at temperature T. Real gases behave more 
like ideal gases as pressure approaches zero or mIv . After substituting mmv 1 , 

mRTZp   and Rcc pImvIm  ,,  the Eq. (6) transforms to: 
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where pImc ,  denotes the temperature dependent molar heat capacity of ideal gas at 

constant pressure,  R is the universal gas constant, Z is the compression factor and mI  and 

m  are the corresponding molar densities of ideal and real gas at temperature T. After 
substituting the first and the second derivative of the AGA-8 compressibility equation 
(Starling & Savidge, 1992, ISO-12213-2, 2006) 
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into the Eq. (7) and after integration we obtain 
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where r  is the reduced density ( mr K  3 ), B  is the second virial coefficient,  *
nC  are 

the temperature dependent coefficients, K is the mixture size parameter while  nb ,  nc  
and  nk  are the equation of state parameters. The mixture size parameter K is calculated 
using the following equation (ISO-12213-2, 2006): 
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where iy  denotes the molar fraction of the component i, while  iK  and  ijK  are the 
corresponding size parameters and the binary interaction parameters given in [ISO-12213-2, 
2006]. According to (ISO-12213-2, 2006) the second virial coefficient is calculated using the 
following equation: 
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and the coefficients  *
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where T is temperature, N is the total number of gas mixture components, iy  is the molar 

fraction of the component i,  na ,  nf ,  ng ,  nq ,  ns ,  nu , and  nw  are the equation of 
state parameters,  iE ,  iF ,  iG ,  iK ,  iQ ,  iS  and  iW  are the corresponding 

characterization parameters while  *
ijE  and  *

ijG  are the corresponding binary interaction 
parameters. The main symbols and units are given in Table 1. 
The temperature dependent coefficients  58,...,1;* nCn  and the mixture parameters U, G, 
Q and F are calculated using the equations (ISO-12213-2, 2006):  
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Symbols and units 
Symbol Description Unit 
B Second virial coefficient m3*kmol-1 

*
nijB  Mixture interaction coefficient - 

C Coefficient of discharge - 
cm,p  Molar heat capacity at constant pressure J/(mol·K) 
cm,v  Molar heat capacity at constant volume J/(mol·K) 
C*n Temperature and composition dependent coefficients - 
cn AGA-8 equation of state parameter - 
cp Specific heat capacity at constant pressure J/(kg·K) 

pImc ,  Ideal molar heat capacity of the natural gas mixture J/(mol·K) 
j
pimc ,  Ideal molar heat capacity of the gas component j  J/(mol·K) 

D Upstream internal pipe diameter m 
d Diameter of orifice m 
h Specific enthalpy J/kg 
K Size parameter - 
M Molar mass of the gas mixture kg·kmol-1 
p Absolute pressure Pa 
q Mass flow rate kg/s 
R Molar gas constant 8314.51 J/(kmol·K) 
s Specific entropy J/(kg·K) 
T Absolute temperature K 
vm  Molar specific volume m3/kmol 
vmI Molar specific volume of ideal gas m3/kmol 
yi Molar fraction of i-th component in gas mixture - 
Z Compression factor - 
β Diameter ratio d/D - 
Δp Differential pressure Pa 
Δ Pressure loss Pa   Isentropic exponent - 

JT  Joule-Thomson coefficient K/Pa 
ρm Molar density kmol/m3 
ρmI Molar density of ideal gas kmol/m3 
ρr Reduced density - 

 

Table 1. Symbols and units (for additional symbols and units refer to (ISO-12213-2, 2006). 
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where, ijU  is the binary interaction parameter for mixture energy. The first and the second 

derivatives of the coefficients B and *
nC , with respect to temperature are: 
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The ideal molar heat capacity pIc  is calculated by 
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where jy  is the molar fraction of component j in the gas mixture and j

pimc ,  is the molar heat 
capacity of the same component. The molar heat capacities of the ideal gas mixture 
components can be approximated by DIPPR/AIChE generic equations (DIPPR® Project 801, 
2005), i.e. 
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where j

pimc ,  is the molar heat capacity of the component j of the ideal gas mixture, ja , b j , 
c j , jd  and je  are the corresponding constants, and T is the temperature. 
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The partial derivative of pressure with respect to temperature at constant molar volume and 
the partial derivative of molar volume with respect to temperature at constant pressure are 
defined by the equations: 
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The isentropic exponent is defined by the following relation 
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The JT coefficient is defined by the following equation: 
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The derivation of the Eq. (39) is elaborated in (Olander, 2007 & Maric, 2005). 

 
3. Implementation in software    

The procedure for the calculation of natural gas density, compression, molar heat capacity, 
isentropic exponent and the JT coefficient can be implemented in object oriented paradigm, 
which enables its easy integration into the software projects. The interface to the software 
object S is shown in Fig. 1. The input/output parameters and functions are accessible while 
the internal structure is hidden to the user. The function “Calculate” maps the input 
parameters (pressure, temperature and the molar fractions of natural gas components) into 
the output parameters (density, compression, molar heat capacity, isentropic exponent, JT 
coefficient, etc.). 
 

Fig. 1. Interface to the software object, which implements the calculation of natural gas 
properties. 
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Table 2 depicts the calculation procedure. Prior to the calculation of the molar heat 
capacities, isentropic exponent and JT coefficient, the density and the compression factor of 
a natural gas must be calculated. The false position method is combined with the successive 
bisection method to calculate the roots of the equation of state [Starling & Savidge, 1992]. 
 

  
 

Table 2. The input/output parameters and the procedure for the computation of the natural 
gas properties. 

Input parameters – constant: 
 molar gas constant (R=8314.51 J/(kmol·K)) 
 natural gas equation of state parameters (an, bn, cn, kn, un, gn, qn, fn, sn, wn; n=1, 2,...,58), 

characterization parameters (Mi, Ei, Ki, Gi, Qi, Fi, Si, Wi; i=1,...,21) and binary interaction 

parameters ( *
, jiE , jiU , , jiK , , *

, jiG ) (see ISO 12213-2) 

 DIPPR/AIChE gas heat capacity constants (aj, bj, cj, dj;, ej; j=1,2,...,N) 
Input parameters – time varying: 
 absolute pressure: p [MPa] 
 absolute temperature: T [K] 
 molar fractions of the natural gas mixture: yi; i=1,2,...,N 

Calculation procedure: 
1. mixture size parameter K  (Eq. 13), second virial coefficient B   (Eq. 14) and temperature 

dependent coefficients *
nC  (Eq. 18) 

2. compression factor Z  (Eq. 8)  (see ISO-12213-2 for details of calculation) 

3. molar density RTZpm / , density mM  , reduced density mr K  3  and 

molar volume mmv /1 . 

4. coefficients nD  and  nD1  (Eqs. 32 and 36) 

5. 1st and 2nd derivative of the second virial coefficient B: B  (Eq. 23) and B  (Eq. 24) 

6. 1st and 2nd derivative of the coefficient *
nC : 

*
nC (Eq. 25) and 

*
nC  (Eq. 26) 

7. 1st derivative of the compression factor Z:  pTZ   (Eq. 33) 

8. partial derivatives of pressure:  
mv

Tp   (Eq. 29) and  Tmvp   (Eq. 38) 

9. ideal molar heat capacity of a gas mixture at constant pressure: pImc ,  (Eq. 27) 

10. molar heat capacity of a gas mixture at constant volume: vmc ,  (Eqs. 9)                                  

11. molar heat capacity of a gas mixture at constant pressure: pmc ,  (Eqs. 4) 

12. isentropic exponent   (Eq. 37) 
13. Joule-Thomson coefficient JT  (Eq. 39) 

 

4. Comparison with experimental results 

In order to compare the calculation results, for the specific heat capacity pc  and the JT 

coefficient JT , with the corresponding high accuracy measurement data (Ernst et al., 2001), 
we assume the identical artificial natural gas mixture with the following mole fractions: 
xCH4=0.79942, xC2H6=0.05029, xC3H8=0.03000, xCO2=0.02090 and xN2=0.09939. The results of the 
measurements (Ernst et al., 2001) and the results of the calculation of the specific heat 
capacity pc  and the JT coefficient JT  of the natural gas mixture, for absolute pressure 
ranging from 0 MPa to 30 MPa in 0.5 MPa steps and for four upstream temperatures (250 K, 
275 K, 300 K and 350 K), are shown in Fig. 2 and 3, respectively. The differences between the 
calculated values and the corresponding measurement results (Ernst et al., 2001), for the pc  

and JT , are shown in Table 3 and 4, respectively.  
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Fig. 2. Calculated and measured molar heat capacity at constant pressure of the natural gas 
mixture. 
 
From Table 3 it can be seen that the calculated values of pc  are within ±0.08 J/(g*K) with the 
measurement results for the pressures up to 12 MPa. At higher pressures, up to 30 MPa, the 
difference increases but never exceeds ±0.2 J/(g*K). For pressures up to 12 MPa the relative 
difference between the calculated and experimentally obtained pc  never exceeds ±2.00%. 
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275 K, 300 K and 350 K), are shown in Fig. 2 and 3, respectively. The differences between the 
calculated values and the corresponding measurement results (Ernst et al., 2001), for the pc  

and JT , are shown in Table 3 and 4, respectively.  
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Fig. 2. Calculated and measured molar heat capacity at constant pressure of the natural gas 
mixture. 
 
From Table 3 it can be seen that the calculated values of pc  are within ±0.08 J/(g*K) with the 
measurement results for the pressures up to 12 MPa. At higher pressures, up to 30 MPa, the 
difference increases but never exceeds ±0.2 J/(g*K). For pressures up to 12 MPa the relative 
difference between the calculated and experimentally obtained pc  never exceeds ±2.00%. 
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Fig. 3. Calculated and measured JT coefficient of the natural gas mixture. 
 

P [MPa]:  T [K] 250 275 300 350 
 (cp_calculated - cp_measured) [J/(g*K)] 
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7.5 -0.055 -0.032 - - 

10.0 -0.077 -0.033 -0.048 -0.042 
11.0 -0.075 - - - 
12.5 -0.092 -0.030 - - 
13.5 -0.097 -0.039 - - 
15.0 -0.098 -0.033 -0.082 -0.069 
16.0 - -0.036 - - 
17.5 - -0.043 -0.075 - 
20.0 -0.081 -0.048 -0.066 -0.134 
25.0 -0.082 -0.033 -0.064 -0.171 
30.0 -0.077 -0.025 -0.070 -0.194 

 

Table 3. Difference between the calculated and measured specific heat capacity at constant 
pressure of a natural gas. 
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Fig. 4. Calculated isentropic exponent of the natural gas mixture. 
 
From Table 4 it can be seen that the calculated values of JT  are within ±0.113 K/MPa with 
the experimental results for the pressures up to 30 MPa. The relative difference increases 
with the increase of pressure but never exceeds ±2.5% for the pressures up to 12 MPa. At 
higher pressures, when the values of JT  are close to zero, the relative difference may 
increase significantly. The calculation results obtained for pure methane and methane-
ethane mixture are in considerably better agreement with the corresponding experimental 
data (Ernst et al., 2001) than for the natural gas mixture shown above. We estimate that the 
relative uncertainty of the calculated pc  and JT  of the AGA-8 natural gas mixtures in 
common industrial operating conditions (pressure range 0-12 MPa and temperature range 
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Fig. 4. Calculated isentropic exponent of the natural gas mixture. 
 
From Table 4 it can be seen that the calculated values of JT  are within ±0.113 K/MPa with 
the experimental results for the pressures up to 30 MPa. The relative difference increases 
with the increase of pressure but never exceeds ±2.5% for the pressures up to 12 MPa. At 
higher pressures, when the values of JT  are close to zero, the relative difference may 
increase significantly. The calculation results obtained for pure methane and methane-
ethane mixture are in considerably better agreement with the corresponding experimental 
data (Ernst et al., 2001) than for the natural gas mixture shown above. We estimate that the 
relative uncertainty of the calculated pc  and JT  of the AGA-8 natural gas mixtures in 
common industrial operating conditions (pressure range 0-12 MPa and temperature range 
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250-350 K) is unlikely to exceed ±3.00 % and ±4.00 %, respectively. Fig. 4 shows the results of 
the calculation of the isentropic exponent. Since the isentropic exponent is a theoretical 
parameter there exist no experimental data for its verification.  

 
5. Flow rate measurement 

Flow rate equations for differential pressure meters assume a constant fluid density of a 
fluid within the meter. This assumption applies only to incompressible flows. In the case of 
compressible flows, a correction must be made. This correction is known as adiabatic 
expansion factor, which depends on several parameters including differential pressure, 
absolute pressure, pipe inside diameter, differential device bore diameter and isentropic 
exponent. Isentropic exponent has a limited effect on the adiabatic correction factor but has 
to be calculated if accurate flow rate measurements are needed. 

Flow direction

Natural gas

Orifice plate

p u , T u p d , T d 
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D

D 6D

d

 
Fig. 5. The schematic diagram of the natural gas flow rate measurement using an orifice 
plate with corner taps. 
 
When a gas expands through the restriction to a lower pressure it changes its temperature 
and density (Fig. 5). This process occurs under the conditions of constant enthalpy and is 
known as JT expansion (Shoemaker at al., 1996). It can also be considered as an adiabatic 
effect because the pressure change occurs too quickly for significant heat transfer to take 
place. The temperature change is related to pressure change and is characterized by the JT 
coefficient. The temperature change increases with the increase of the pressure drop and is 
proportional with the JT coefficient. According to (ISO5167, 2003) the upstream temperature 
is used for the calculation of flow rate but the temperature is preferably measured 
downstream of the differential device. The use of downstream instead of upstream 
temperature may cause a flow rate measurement error due to the difference in the gas 
density caused by the temperature change. Our objective is to derive the numerical 
procedure for the calculation of the natural gas specific heat capacity, isentropic exponent 
and JT coefficient that can be used for the compensation of flow rate error. In order to make 
the computationally intensive compensation procedure applicable to low computing power 
real-time measurement systems the low complexity surrogate models of original procedures 
will be derived using the computational intelligence methods: ANN and GMDH. The 

 

surrogate models have to be tailored to meet the constraints imposed on the approximation 
accuracy and the complexity of the model, i.e. the execution time (ET).  

 
6. Compensation of flow rate error 

We investigated the combined effect of the JT coefficient and the isentropic exponent of a 
natural gas on the accuracy of flow rate measurements based on differential devices.  The 
measurement of a natural gas (ISO-12213-2, 2006) flowing in a pipeline through orifice plate 
with corner taps (Fig. 5) is assumed to be completely in accordance with the international 
standard (ISO-5167, 2003). The detailed description of the flow rate equation with the 
corresponding iterative computation scheme is given in (ISO-5167, 2003). The calculation of 
the natural gas flow rate depends on multiple parameters: 
  dDpTPqq uuuuuu ,,,,,,,  , (40) 
 
where qu, u, u and u represent the corresponding mass flowrate, density, viscosity and the 
isentropic exponent calculated at upstream pressure Pu and temperature Tu, while D and d 
denote the internal diameters of the pipe and the orifice, respectively. In case of the 
upstream pressure and the downstream temperature measurement, as suggested by (ISO-
5167, 2003), the flow rate equation, Eq. (40), changes to: 
  dDpTPqq ddddud ,,,,,,,  , (41) 
 
where qd, d, d and d denote the corresponding mass flow rate, density, viscosity and the 
isentropic exponent calculated in “downstream conditions” i.e. at the upstream pressure pu 
and the downstream temperature Td. For certain natural gas compositions and operating 
conditions the flow rate qd may differ significantly from qu and the corresponding 
compensation for the temperature drop effects, due to JT expansion, may be necessary in 
order to preserve the requested measurement accuracy (Maric & Ivek, 2010). 
The flow rate correction factor K can be obtained by dividing the true flow rate qu calculated 
in the upstream conditions, Eq. (40), by the flow rate qd calculated in the “downstream 
conditions”, Eq. (41): 
 

d

u

q
qK   (42) 

 
For the given correction factor Eq. (42), the flow rate at the upstream pressure and 
temperature can be calculated directly from the flow rate computed in the “downstream 
conditions”, i.e. du qKq  . Our objective is to derive the GMDH polynomial model of the 
flow rate correction factor. Given the surrogate model (KSM) for the flow rate correction 
factor Eq. (42), the true flow rate qu can be approximated by: dSMSM qKq  , where qSM 
denotes the corrected flow rate. 
The flow rate through orifice is proportional to the expansibility factor ε, which is related to 
the isentropic exponent κ (ISO-5167, 2003): 

www.intechopen.com



Natural gas properties and low computation 515

 

250-350 K) is unlikely to exceed ±3.00 % and ±4.00 %, respectively. Fig. 4 shows the results of 
the calculation of the isentropic exponent. Since the isentropic exponent is a theoretical 
parameter there exist no experimental data for its verification.  

 
5. Flow rate measurement 

Flow rate equations for differential pressure meters assume a constant fluid density of a 
fluid within the meter. This assumption applies only to incompressible flows. In the case of 
compressible flows, a correction must be made. This correction is known as adiabatic 
expansion factor, which depends on several parameters including differential pressure, 
absolute pressure, pipe inside diameter, differential device bore diameter and isentropic 
exponent. Isentropic exponent has a limited effect on the adiabatic correction factor but has 
to be calculated if accurate flow rate measurements are needed. 

Flow direction

Natural gas

Orifice plate

p u , T u p d , T d 

p



D

D 6D

d

 
Fig. 5. The schematic diagram of the natural gas flow rate measurement using an orifice 
plate with corner taps. 
 
When a gas expands through the restriction to a lower pressure it changes its temperature 
and density (Fig. 5). This process occurs under the conditions of constant enthalpy and is 
known as JT expansion (Shoemaker at al., 1996). It can also be considered as an adiabatic 
effect because the pressure change occurs too quickly for significant heat transfer to take 
place. The temperature change is related to pressure change and is characterized by the JT 
coefficient. The temperature change increases with the increase of the pressure drop and is 
proportional with the JT coefficient. According to (ISO5167, 2003) the upstream temperature 
is used for the calculation of flow rate but the temperature is preferably measured 
downstream of the differential device. The use of downstream instead of upstream 
temperature may cause a flow rate measurement error due to the difference in the gas 
density caused by the temperature change. Our objective is to derive the numerical 
procedure for the calculation of the natural gas specific heat capacity, isentropic exponent 
and JT coefficient that can be used for the compensation of flow rate error. In order to make 
the computationally intensive compensation procedure applicable to low computing power 
real-time measurement systems the low complexity surrogate models of original procedures 
will be derived using the computational intelligence methods: ANN and GMDH. The 

 

surrogate models have to be tailored to meet the constraints imposed on the approximation 
accuracy and the complexity of the model, i.e. the execution time (ET).  

 
6. Compensation of flow rate error 

We investigated the combined effect of the JT coefficient and the isentropic exponent of a 
natural gas on the accuracy of flow rate measurements based on differential devices.  The 
measurement of a natural gas (ISO-12213-2, 2006) flowing in a pipeline through orifice plate 
with corner taps (Fig. 5) is assumed to be completely in accordance with the international 
standard (ISO-5167, 2003). The detailed description of the flow rate equation with the 
corresponding iterative computation scheme is given in (ISO-5167, 2003). The calculation of 
the natural gas flow rate depends on multiple parameters: 
  dDpTPqq uuuuuu ,,,,,,,  , (40) 
 
where qu, u, u and u represent the corresponding mass flowrate, density, viscosity and the 
isentropic exponent calculated at upstream pressure Pu and temperature Tu, while D and d 
denote the internal diameters of the pipe and the orifice, respectively. In case of the 
upstream pressure and the downstream temperature measurement, as suggested by (ISO-
5167, 2003), the flow rate equation, Eq. (40), changes to: 
  dDpTPqq ddddud ,,,,,,,  , (41) 
 
where qd, d, d and d denote the corresponding mass flow rate, density, viscosity and the 
isentropic exponent calculated in “downstream conditions” i.e. at the upstream pressure pu 
and the downstream temperature Td. For certain natural gas compositions and operating 
conditions the flow rate qd may differ significantly from qu and the corresponding 
compensation for the temperature drop effects, due to JT expansion, may be necessary in 
order to preserve the requested measurement accuracy (Maric & Ivek, 2010). 
The flow rate correction factor K can be obtained by dividing the true flow rate qu calculated 
in the upstream conditions, Eq. (40), by the flow rate qd calculated in the “downstream 
conditions”, Eq. (41): 
 

d

u

q
qK   (42) 

 
For the given correction factor Eq. (42), the flow rate at the upstream pressure and 
temperature can be calculated directly from the flow rate computed in the “downstream 
conditions”, i.e. du qKq  . Our objective is to derive the GMDH polynomial model of the 
flow rate correction factor. Given the surrogate model (KSM) for the flow rate correction 
factor Eq. (42), the true flow rate qu can be approximated by: dSMSM qKq  , where qSM 
denotes the corrected flow rate. 
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     /184 193.0256.0351.01 ud pp , (43) 
 
where β denotes the ratio of the diameter of the orifice to the inside diameter of the pipe, 
while pu and pd are the absolute pressures upstream and downstream of the orifice plate, 
respectively. The corresponding temperature change (T) of the gas for the orifice plate is 
defined by   ),( duJTdu TpTTT , (44) 

where Tu and Td indicate the corresponding temperatures upstream and downstream of the 
orifice plate, ),( duJT Tp  is the JT coefficient at upstream pressure pu and downstream 
temperature Td  and   is the pressure loss across the orifice plate (Urner, 1997) 
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
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where C denotes the coefficient of discharge for orifice plate with corner taps (ISO-5167, 
2003) and P is the pressure drop across the orifice plate. According to (ISO-5167, 2003), the 
temperature of the fluid shall preferably be measured downstream of the primary device 
but upstream temperature is to be used for the calculation of the flow rate. Within the limits 
of application of the international standard ISO-5167 it is generally assumed that the 
temperature drop across differential device can be neglected but it is also suggested to be 
taken into account if higher accuracies are required. It is also assumed that the isentropic 
exponent can be approximated by the ratio of the specific heat capacity at constant pressure 
to the specific heat capacity at constant volume of ideal gas. These approximations may 
produce a considerable measurement error. The relative flow measurement error Er is 
estimated by comparing the approximate (qd) and the corrected (qu) mass flow rate i.e. 

  uudr qqqE   (46) 
 
Step Description 

1 Calculate the natural gas properties (d , μJT  and d ) at pu, and Td, (Table 2). 

2 Calculate the dynamic viscosity d at Pu, and Td, using e.g. the residual viscosity equation 
(Poling, 2000). 

3 Calculate the mass flow rate qd and the discharge coefficient C at Pu, Td  and Δp (ISO-5167, 2003). 
4 Calculate the pressure loss Δ, Eq. (45). 
5 Calculate the upstream temperature Tu  in accordance with Eq. (44). 
6 Calculate the natural gas properties (u and u) at pu, and Tu, (Table 2). 

7 Calculate the dynamic viscosity u  at pu, and Tu, using e.g. the residual viscosity equation 
(Poling, 2000). 

8 Calculate the mass flow rate qu at pu, Tu  and Δp (ISO-5167, 2003). 
 

Table 5. Precise correction of the flow rate based on downstream temperature measurement 
and on the computation of natural gas properties. 
 

 

The individual and the combined relative errors due to the approximations of the 
temperature drop and the isentropic exponent can be estimated by using the Eq. (46). The 
precise correction of the natural gas flow rate, based on upstream pressure and downstream 
temperature measurement and on the computation of the corresponding natural gas 
properties, is summarized in Table 5.  
 
The procedure in Table 5 requires a double calculation of both the flow rate and the 
properties of the natural gas. To reduce the computational burden we aim to derive a low-
complexity flow rate correction factor model that will enable direct compensation of the 
flow rate error caused by the measurement of the downstream temperature. The correction 
factor model has to be simple enough in order to be executable in real-time and accurate 
enough to ensure the acceptable measurement accuracy. 

 
7. Results of flow rate measurement simulations 

In order to simulate a flow rate measurement error caused by the non-compensated 
temperature drop, a natural gas mixture (Gas 3) from Annex C of (ISO-12213-2, 2006) is 
assumed to flow through orifice plate with corner taps (ISO-5167, 2003) as illustrated in Fig. 
5. Following the recommendations (ISO-5167, 2003), the absolute pressure is assumed to be 
measured upstream (pu) and the temperature downstream (Td) of the primary device. Fig. 6  
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Fig. 6. Temperature drop due to JT effect   JTT  when measuring flow rate of natural 
gas mixture through orifice plate with corner taps (ISO-5167, 2003). The upstream pressure 
varies from 1 MPa to 60 MPa in 1 MPa steps and upstream temperature from 245 K to 305 K 
in 20 K steps for each of the two differential pressures Δp (20 kPa and 100 kPa). The internal 
diameters of orifice and pipe are: d=120 mm and D=200 mm. 
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orifice plate, ),( duJT Tp  is the JT coefficient at upstream pressure pu and downstream 
temperature Td  and   is the pressure loss across the orifice plate (Urner, 1997) 
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where C denotes the coefficient of discharge for orifice plate with corner taps (ISO-5167, 
2003) and P is the pressure drop across the orifice plate. According to (ISO-5167, 2003), the 
temperature of the fluid shall preferably be measured downstream of the primary device 
but upstream temperature is to be used for the calculation of the flow rate. Within the limits 
of application of the international standard ISO-5167 it is generally assumed that the 
temperature drop across differential device can be neglected but it is also suggested to be 
taken into account if higher accuracies are required. It is also assumed that the isentropic 
exponent can be approximated by the ratio of the specific heat capacity at constant pressure 
to the specific heat capacity at constant volume of ideal gas. These approximations may 
produce a considerable measurement error. The relative flow measurement error Er is 
estimated by comparing the approximate (qd) and the corrected (qu) mass flow rate i.e. 
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Step Description 

1 Calculate the natural gas properties (d , μJT  and d ) at pu, and Td, (Table 2). 

2 Calculate the dynamic viscosity d at Pu, and Td, using e.g. the residual viscosity equation 
(Poling, 2000). 

3 Calculate the mass flow rate qd and the discharge coefficient C at Pu, Td  and Δp (ISO-5167, 2003). 
4 Calculate the pressure loss Δ, Eq. (45). 
5 Calculate the upstream temperature Tu  in accordance with Eq. (44). 
6 Calculate the natural gas properties (u and u) at pu, and Tu, (Table 2). 

7 Calculate the dynamic viscosity u  at pu, and Tu, using e.g. the residual viscosity equation 
(Poling, 2000). 

8 Calculate the mass flow rate qu at pu, Tu  and Δp (ISO-5167, 2003). 
 

Table 5. Precise correction of the flow rate based on downstream temperature measurement 
and on the computation of natural gas properties. 
 

 

The individual and the combined relative errors due to the approximations of the 
temperature drop and the isentropic exponent can be estimated by using the Eq. (46). The 
precise correction of the natural gas flow rate, based on upstream pressure and downstream 
temperature measurement and on the computation of the corresponding natural gas 
properties, is summarized in Table 5.  
 
The procedure in Table 5 requires a double calculation of both the flow rate and the 
properties of the natural gas. To reduce the computational burden we aim to derive a low-
complexity flow rate correction factor model that will enable direct compensation of the 
flow rate error caused by the measurement of the downstream temperature. The correction 
factor model has to be simple enough in order to be executable in real-time and accurate 
enough to ensure the acceptable measurement accuracy. 

 
7. Results of flow rate measurement simulations 

In order to simulate a flow rate measurement error caused by the non-compensated 
temperature drop, a natural gas mixture (Gas 3) from Annex C of (ISO-12213-2, 2006) is 
assumed to flow through orifice plate with corner taps (ISO-5167, 2003) as illustrated in Fig. 
5. Following the recommendations (ISO-5167, 2003), the absolute pressure is assumed to be 
measured upstream (pu) and the temperature downstream (Td) of the primary device. Fig. 6  
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Fig. 6. Temperature drop due to JT effect   JTT  when measuring flow rate of natural 
gas mixture through orifice plate with corner taps (ISO-5167, 2003). The upstream pressure 
varies from 1 MPa to 60 MPa in 1 MPa steps and upstream temperature from 245 K to 305 K 
in 20 K steps for each of the two differential pressures Δp (20 kPa and 100 kPa). The internal 
diameters of orifice and pipe are: d=120 mm and D=200 mm. 
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