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1. Introduction     
 

The traditional spacecraft system is a monolithic structure with a single mission focused 
design and lengthy production and qualification schedules coupled with enormous cost. 
Additionally, there rarely, if ever, is any designed preventive maintenance plan or re-fueling 
capability. There has been much research in recent years into alternative options. One 
alternative option involves autonomous on-orbit servicing of current or future monolithic 
spacecraft systems. The U.S. Department of Defense (DoD) embarked on a highly successful 
venture to prove out such a concept with the Defense Advanced Research Projects Agency’s 
(DARPA’s) Orbital Express program. Orbital Express demonstrated all of the enabling 
technologies required for autonomous on-orbit servicing to include refueling, component 
transfer, autonomous satellite grappling and berthing, rendezvous, inspection, proximity 
operations, docking and undocking, and autonomous fault recognition and anomaly 
handling (Kennedy, 2008). Another potential option involves a paradigm shift from the 
monolithic spacecraft system to one involving multiple interacting spacecraft that can 
autonomously assemble and reconfigure. Numerous benefits are associated with 
autonomous spacecraft assemblies, ranging from a removal of significant intra-modular 
reliance that provides for parallel design, fabrication, assembly and validation processes to 
the inherent smaller nature of fractionated systems which allows for each module to be 
placed into orbit separately on more affordable launch platforms (Mathieu, 2005). 
With respect specifically to the validation process, the significantly reduced dimensions and 
mass of aggregated spacecraft when compared to the traditional monolithic spacecraft allow 
for not only component but even full-scale on-the-ground Hardware-In-the-Loop (HIL) 
experimentation. Likewise, much of the HIL experimentation required for on-orbit servicing 
of traditional spacecraft systems can also be accomplished in ground-based laboratories 
(Creamer, 2007). This type of HIL experimentation complements analytical methods and 
numerical simulations by providing a low-risk, relatively low-cost and potentially high-
return method for validating the technology, navigation techniques and control approaches 
associated with spacecraft systems. Several approaches exist for the actual HIL testing in a 
laboratory environment with respect to spacecraft guidance, navigation and control. One 
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such method involves reproduction of the kinematics and vehicle dynamics for 3-DoF (two 
horizontal translational degrees and one rotational degree about the vertical axis) through 
the use of robotic spacecraft simulators that float via planar air bearings on a flat horizontal 
floor. This particular method is currently being employed by several research institutions 
and is the validation method of choice for our research into GNC algorithms for proximity 
operations at the Naval Postgraduate School (Machida et al., 1992; Ullman, 1993; Corrazzini 
& How, 1998; Marchesi et al., 2000; Ledebuhr et al., 2001; Nolet et al., 2005; LeMaster et al., 
2006; Romano et al., 2007). With respect to spacecraft involved in proximity operations, the 
in-plane and cross-track dynamics are decoupled, as modeled by the Hill-Clohessy-
Wiltshire (HCW) equations, thus the reduction to 3-Degree of Freedom (DoF) does not 
appear to be a critical limiter. One consideration involves the reduction of the vehicle 
dynamics to one of a double integrator. However, the orbital dynamics can be considered to 
be a disturbance that needs to be compensated for by the spacecraft navigation and control 
system during the proximity navigation and assembly phase of multiple systems. Thus the 
flat floor testbed can be used to capture many of the critical aspects of an actual autonomous 
proximity maneuver that can then be used for validation of numerical simulations. Portions 
of the here-in described testbed, combined with the first generation robotic spacecraft 
simulator of the Spacecraft Robotics Laboratory (SRL) at Naval Postgraduate School (NPS), 
have been employed to propose and experimentally validate control algorithms. The 
interested reader is referred to (Romano et al., 2007) for a full description of this robotic 
spacecraft simulator and the associated HIL experiments involving its demonstration of 
successful autonomous spacecraft approach and docking maneuvers to a collaborative 
target with a prototype docking interface of the Orbital Express program. 
Given the requirement for spacecraft aggregates to rendezvous and dock during the final 
phases of assembly and a desire to maximize the useable surface area of the spacecraft for 
power generation, sensor packages, docking mechanisms and payloads while minimizing 
thruster impingement, control of such systems using the standard control actuator 
configuration of fixed thrusters on each face coupled with momentum exchange devices can 
be challenging if not impossible. For such systems, a new and unique configuration is 
proposed which may capitalize, for instance, on the recently developed carpal robotic joint 
invented by Dr. Steven Canfield with its hemispherical vector space (Canfield, 1998). It is 
here demonstrated through Lie algebra analytical methods and experimental results that 
two vectorable in-plane thrusters in an opposing configuration can yield a minimum set of 
actuators for a controllable system. It will also be shown that by coupling the proposed set 
of vectorable thrusters with a single degree of freedom Control Moment Gyroscope, an 
additional degree of redundancy can be gained. Experimental results are included using 
SRL’s second generation reduced order (3 DoF) spacecraft simulator. A general overview of 
this spacecraft simulator is presented in this chapter (additional details on the simulators 
can be found in: Hall, 2006; Eikenberry, 2006; Price, W., 2006; Romano & Hall, 2006; Hall & 
Romano, 2007a; Hall & Romano, 2007b). 
While presenting an overview of a robotic testbed for HIL experimentation of guidance and 
control algorithms for on-orbit proximity maneuvers, this chapter specifically focuses on 
exploring the feasibility, design and evaluation in a 3-DoF environment of a vectorable 
thruster configuration combined with optional miniature single gimbaled control moment 
gyro (MSGCMG) for an agile small spacecraft. Specifically, the main aims are to present and 
practically confirm the theoretical basis of small-time local controllability for this unique 

actuator configuration through both analytical and numerical simulations performed in 
previous works (Romano & Hall, 2006; Hall & Romano, 2007a; Hall & Romano, 2007b) and 
to validate the viability of using this minimal control actuator configuration on a small 
spacecraft in a practical way. Furthermore, the experimental work is used to confirm the 
controllability of this configuration along a fully constrained trajectory through the 
employment of a smooth feedback controller based on state feedback linearization and 
linear quadratic regulator techniques and proper state estimation methods. The chapter is 
structured as follows: First the design of the experimental testbed including the floating 
surface and the second generation 3-DoF spacecraft simulator is introduced. Then the 
dynamics model for the spacecraft simulator with vectorable thrusters and momentum 
exchange device are formulated. The controllability concerns associated with this uniquely 
configured system are then addressed with a presentation of the minimum number of 
control inputs to ensure small time local controllability. Next, a formal development is 
presented for the state feedback linearized controller, state estimation methods, Schmitt 
trigger and Pulse Width Modulation scheme. Finally, experimental results are presented. 

 
2. The NPS Robotic Spacecraft Simulator Testbed 
 

Three generations of robotic spacecraft simulators have been developed at the NPS 
Spacecraft Robotics Laboratory, in order to provide for relatively low-cost HIL 
experimentation of GNC algorithms for spacecraft proximity maneuvers (see Fig.1). In 
particular, the second generation robotic spacecraft simulator testbed is used for the here-in 
presented research. The whole spacecraft simulator testbed consists of three components. 
The two components specifically dedicated to HIL experimentation in 3-DoF are a floating 
surface with an indoor pseudo-GPS (iGPS) measurement system and one 3-DoF 
autonomous spacecraft simulator. The third component of the spacecraft simulator testbed 
is a 6-DoF simulator stand-alone computer based spacecraft simulator and is separated from 
the HIL components. Additionally, an off-board desktop computer is used to support the 3-
DoF spacecraft simulator by providing the capability to upload software, initiate 
experimental testing, receive logged data during testing and process the iGPS position 
coordinates. Fig. 2 depicts the robotic spacecraft simulator in the Proximity Operations 
Simulator Facility (POSF) at NPS with key components identified. The main testbed systems 
are briefly described in the next sections with further details given in (Hall, 2006; Price, 2006; 
Eikenberry, 2006; Romano & Hall, 2006; Hall & Romano, 2007a; Hall & Romano 2007b). 
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Fig. 1. Three generations of spacecraft simulator at the NPS Spacecraft Robotics Laboratory 
(first, second and third generations from left to right) 

 
2.1 Floating Surface 
A 4.9 m by 4.3 m epoxy floor surface provides the base for the floatation of the spacecraft 
simulator. The use of planar air bearings on the simulator reduces the friction to a negligible 
level and with an average residual slope angle of approximately 2.6x10-3 deg for the floating 
surface, the average residual acceleration due to gravity is approximately 1.8x10-3 ms-2. This 
value of acceleration is 2 orders of magnitude lower than the nominal amplitude of the 
measured acceleration differences found during reduced gravity phases of parabolic flights 
(Romano et al, 2007). 
 

Fig. 2. SRL's 2nd Generation 3-DoF Spacecraft Simulator 

 

2.2 3-DoF Robotic Spacecraft Simulator 
SRL’s second generation robotic spacecraft simulator is modularly constructed with three 
easily assembled sections dedicated to each primary subsystem. Prefabricated 6105-T5 
Aluminum fractional t-slotted extrusions form the cage of the vehicle while one square foot, 
.25 inch thick static dissipative rigid plastic sheets provide the upper and lower decks of 
each module. The use of these materials for the basic structural requirements provides a 
high strength to weight ratio and enable rapid assembly and reconfiguration. Table 1 reports 
the key parameters of the 3-DoF spacecraft simulator. 

 
2.2.1 Propulsion and Flotation Subsystems 
The lowest module houses the flotation and propulsion subsystems. The flotation subsystem 
is composed of four planar air bearings, an air filter assembly, dual 4500 PSI (31.03 MPa) 
carbon-fiber spun air cylinders and a dual manifold pressure reducer to provide 75 PSI (.51 
MPa). This pressure with a volume flow rate for each air bearing of 3.33 slfm (3.33 x 10-3 
m3/min) is sufficient to keep the simulator in a friction-free state for nearly 40 minutes of 
continuous experimentation time. The propulsion subsystem is composed of dual vectorable 
supersonic on-off cold-gas thrusters and a separate dual carbon-fiber spun air cylinder and 
pressure reducer package regulated at 60 PSI (.41 MPa) and has the capability of providing 
the system 31.1 m/s V . 

 
2.2.2 Electronic and Power Distribution Subsystems 
The power distribution subsystem is composed of dual lithium-ion batteries wired in 
parallel to provide 28 volts for up to 12 Amp-Hours and is housed in the second deck of the 
simulator. A four port DC-DC converter distributes the requisite power for the system at 5, 
12 or 24 volts DC. An attached cold plate provides heat transfer from the array to the power 
system mounting deck in the upper module. The current power requirements include a 
single PC-104 CPU stack, a wireless router, three motor controllers, three separate normally-
closed solenoid valves for thruster and air bearing actuation, a fiber optic gyro, a 
magnetometer and a wireless server for transmission of the vehicle’s position via the 
pseudo-GPS system. 
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Subsystem Characteristic Parameter 
Structure Length and width .30 m 
 Height .69 m 
 Mass (Overall) 26 kg 
 

zJ  (Overall) .40 kg-m2 

Propulsion Propellant Compressed Air 
 Equiv. storage capacity .05 m3 @ 31.03 Mpa 
 Operating pressure .41 Mpa 
 Thrust (x2) .159 N 
 ISP 34.3 s 
 Total V  31.1 m/s 
Flotation Propellant Air 
 Equiv. storage capacity 0.05 m3 @ 31.03 Mpa 
 Operating pressure .51 Mpa 
 Linear air bearing (x4) 32 mm diameter 
 Continuous operation ~40 min 
CMG Attitude Control Max torque .668 Nm 
 Momentum storage .098 Nms 
Electrical & Electronic Battery type Lithium-Ion 
 Storage capacity 12 Ah @ 28V 
 Continuous Operation ~6 h 
 Computer 1 PC104 Pentium III 
Sensors Fiber optic gyro KVH Model DSP-3000 
 Position sensor Metris iGPS 
 Magnetometer MicroStrain 3DM-GX1 

Table 1. Key Parameters of the 2nd generation 3-DoF Robotic Spacecraft Simulator 

 
2.2.3 Translation and Attitude Control System Actuators 
The 3-DoF robotic spacecraft simulator includes actuators to provide both translational 
control and attitude control. A full development of the controllability for this unique 
configuration of dual rotating thrusters and one-axis Miniature-Single Gimbaled Control 
Moment Gyro (MSGCMG) will be demonstrated in subsequent sections of this paper. The 
translational control is provided by two cold-gas on-off supersonic nozzle thrusters in a 
dual vectorable configuration. Each thruster is limited in a region  2  with respect to the 
face normal and, through experimental testing at the supplied pressure, has been 
demonstrated to have an ISP of 34.3 s and able to provide .159 N of thrust with less than 10 
msec actuation time (Lugini, 2008). The MSGCMG is capable of providing .668 Nm of torque 
with a maximum angular momentum of .098 Nms. 

 
2.3 6-DoF Computer-Based Numerical Spacecraft Simulator 
A separate component of SRL’s spacecraft simulator testbed at NPS is a 6-DoF computer-
based spacecraft simulator. This simulator enables full 6-DoF numerical simulations to be 
conducted with realistic orbital perturbations including aerodynamic, solar pressure and 

third-body effects, and earth oblateness up to J4. Similar to the 3-DoF robotic simulator, the 
numerical simulator is also modularly designed within a MATLAB®/Simulink® 
architecture to allow near seamless integration and testing of developed guidance and 
control algorithms. Additionally, by using the MATLAB®/Simulink® architecture with the 
added Real Time Workshop™ toolbox, the developed control algorithms can be readily 
transitioned into C-code for direct deployment onto the 3-DoF robotic simulator’s onboard 
processor. A full discussion of the process by which this is accomplished and simplified for 
rapid real-time experimentation on the 3-DoF testbed for either the proprietary MATLAB® 
based XPCTarget™ operating system is given in (Hall, 2006; Price, 2006) or for an open-
source Linux based operating system with the Real Time Application Interface (RTAI) is 
given in (Bevilacqua et al., 2009). 

 
3. Dynamics of a 3-DoF Spacecraft Simulator with Vectorable Thrusters and 
Momentum Exchange Device 
 

Two sets of coordinate frame are established for reference: the inertial coordinate system 
(ICS) designated by XYZ and body-fixed coordinate system (BCS) designated by xyz. These 
reference frames are depicted in Fig. 3 along with the necessary external forces and 
parameters required to properly define the simulators motion. The origin of the body-fixed 
coordinate system is taken to be the center of mass C of the spacecraft simulator and this is 
assumed to be collocated with the simulator’s geometric center. The body z-axis is aligned 
with the inertial Z-axis while the body x-axis is in line with the thrusters points of action. In 
the ICS, the position and velocity vectors of C are given by X  and V  so that  ,X YX marks 
the position of the simulator with respect to the origin of the ICS as measured by the inertial 
measurement sensors and provides the vehicle’s two degrees of translational freedom. The 
vehicle’s rotational freedom is described by an angle of rotation   between the x-axis and 
the X-axis about the z-axis. The angular velocity is thus limited to one degree of freedom 
and is denoted by z . The spacecraft simulator is assumed to be rigid and therefore a 
constant moment of inertia ( zJ ) exists about the z-axis. Furthermore, any changes to the 
mass of the simulator ( m ) due to thruster firing are neglected. 
The forces imparted at a distance L from the center of mass by the vectorable on-off 
thrusters are denoted by 1 2 and F F  respectively. The direction of the thrust vector 1F  is 
determined by 1  which is the angle measured from the outward normal of face one in a 
clockwise direction (right-hand rotation) to where thruster one’s nozzle is pointing. 
Likewise, the direction of the thrust vector 2F  is determined by 2  which is the angle 
measured from the outward normal of face two in a clockwise direction (right-hand 
rotation) to where thruster two’s nozzle is pointing. The torque imparted on the vehicle by a 
momentum exchange device such as a control moment gyro is denoted by MEDT  and can be 
constrained to exist only about the yaw axis as demonstrated in (Hall, 2006; Romano & Hall, 
2006). 
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Fig. 3. SRL‘s 2nd Generation Spacecraft Simulator Schematic 
 
The translation and attitude motion of the simulator are governed by the equations 
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where  2BF  are the thruster inputs limited to the region  2 with respect to each face 
normal and BT  is the attitude input.  I
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where    s sin , c cos      . 
The internal dynamics of the vectorable thrusters are assumed to be linear according to the 
following equations 
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where 1J  and 2J  represent the moments of inertia about each thruster rotational axis 
respectively and 1T , 2T  represent the corresponding thruster rotation control input. 
The system’s state equation given by Eq. (1) can be rewritten in control-affine system form 
as (LaValle, 2006) 
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where uN is the number of controls. With  xN  representing a smooth xN -dimensional 

manifold defined be the size of the state-vector and the control vector to be in  uN
. Defining 
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where the matrix  1G x  is obtained from Eq. (1) as 
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With the system in the form of Eq. (6) given the vector fields in Eqs. (7) and (8), and given 
that ( )f x (the drift term) and ( )G x  (the control matrix of control vector fields) are smooth 
functions, it is important to note that it is not necessarily possible to obtain zero velocity due 
to the influence of the drift term. This fact places the system in the unique subset of control-
affine systems with drift and, as seen later, will call for an additional requirement for 
determining the controllability of the system. Furthermore, when studying controllability of 
systems, the literature to date restricts the consideration to cases where the control is proper. 
Having a proper control implies that the affine hull of the control space is equal to  uN  or 
that the smallest subspace of U  is equal to the number of control vectors and that it is 
closed (Sussman, 1987; Sussman, 1990; Bullo & Lewis, 2005; LaValle, 2006). With a system 
such as a spacecraft in general or the simplified model of the 3-DoF simulator in particular, 
the use of on-off cold-gas thrusters restrict the control space to only positive space with 
respect to both thrust vectors leading to an unclosed set and thus improper control space. In 
order to overcome this issue, a method which leverages the symmetry of the system is used 
by which the controllability of the system is studied by considering only one virtual rotating 
thruster that is positioned a distance L from the center of mass with the vectored thrust 
resolved into a y and x-component. In considering this system perspective, the thruster 
combination now spans 2 and therefore is proper and is analogous to the planar body with 
variable-direction force vector considered in (Lewis & Murray, 1997; Bullo & Lewis, 2005). 
Furthermore, under the assumption that the control bandwidth of the thrusters’s rotation is 
much larger than the control bandwidth of the system dynamics, the internal dynamics of 
the vectorable thrusters can be decoupled from the state and control vectors for the system 
yielding a thrust vector dependent on simply a commanded angle. Thus the system’s state 
vector, assuming that both thrusters and a momentum exchange device are available, 

www.intechopen.com



Laboratory Experimentation of Guidance and Control  
of Spacecraft During On-orbit Proximity Maneuvers 195
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The translation and attitude motion of the simulator are governed by the equations 
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With the system in the form of Eq. (6) given the vector fields in Eqs. (7) and (8), and given 
that ( )f x (the drift term) and ( )G x  (the control matrix of control vector fields) are smooth 
functions, it is important to note that it is not necessarily possible to obtain zero velocity due 
to the influence of the drift term. This fact places the system in the unique subset of control-
affine systems with drift and, as seen later, will call for an additional requirement for 
determining the controllability of the system. Furthermore, when studying controllability of 
systems, the literature to date restricts the consideration to cases where the control is proper. 
Having a proper control implies that the affine hull of the control space is equal to  uN  or 
that the smallest subspace of U  is equal to the number of control vectors and that it is 
closed (Sussman, 1987; Sussman, 1990; Bullo & Lewis, 2005; LaValle, 2006). With a system 
such as a spacecraft in general or the simplified model of the 3-DoF simulator in particular, 
the use of on-off cold-gas thrusters restrict the control space to only positive space with 
respect to both thrust vectors leading to an unclosed set and thus improper control space. In 
order to overcome this issue, a method which leverages the symmetry of the system is used 
by which the controllability of the system is studied by considering only one virtual rotating 
thruster that is positioned a distance L from the center of mass with the vectored thrust 
resolved into a y and x-component. In considering this system perspective, the thruster 
combination now spans 2 and therefore is proper and is analogous to the planar body with 
variable-direction force vector considered in (Lewis & Murray, 1997; Bullo & Lewis, 2005). 
Furthermore, under the assumption that the control bandwidth of the thrusters’s rotation is 
much larger than the control bandwidth of the system dynamics, the internal dynamics of 
the vectorable thrusters can be decoupled from the state and control vectors for the system 
yielding a thrust vector dependent on simply a commanded angle. Thus the system’s state 
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where the matrix  1G x can be obtained by considering the relation of the desired control 
vector to the body centered reference system, in the two cases of positive force needed in the 
x direction (  

BUx  0 ) and negative force needed in the x direction (  
BUx  0 ). In this manner, 

the variables in Eq. (8) and Eq. (9) can be defined as 
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yielding the matrix in  1G x through substitution into Eq. (8) as 
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When the desired control input to the system along the body x-axis is zero, both thrusters 
can be used to provide a control force along the y-axis, while a momentum exchange device 
provides any required torque. In this case, the control vector in (9) becomes     2

1 2, [ , ]T B B
y zu u F Tu U such that the variables in Eq. (8) and (9) can be defined as 
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which yields the matrix  1G x through substitution into Eq. (8) as 
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As will be demonstrated in later, the momentum exchange device is not necessary to ensure 
small time controllability for this system. In considering this situation, which also occurs 
when a control moment gyroscope is present but is near the singular conditions and 
therefore requires desaturation, the thruster not being used for translation control can be 
slewed to  2  depending on the required torque compensation and fired to affect the 
desired angular rate change. The desired control input to the system with respect to the 
body x-axis  B

xU can again be used to define the desired variables such that 
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which yields the matrix  1G x through substitution into Eq. (8)as 
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In case of zero force requested along x with only thrusters acting, the system cannot in 
general provide the requested torque value. 
A key design consideration with this type of control actuator configuration is that with only 
the use of an on/off rotating thruster to provide the necessary torque compensation, fine 
pointing can be difficult and more fuel is required to affect a desired maneuver involving 
both translation and rotation. 

 
4. Small-Time Local Controllability 
 

Before studying the controllability for a nonlinear control-affine system of the form in       
Eq. (6), it is important to review several definitions. First, the set of states reachable in time 
at most T is given by   0 ,R Tx  by solutions of the nonlinear control-affine system.  
Definition 1 (Accessibility) 
A system is accessible from 0x (the initial state) if there exists  0T such that the interior of 

  0 ,R tx is not an empty set for   0,t T (Bullo & Lewis, 2005). 

Definition 2 (Proper Small Time Local Controllability) 
A system is small time locally controllable (STLC) from 0x  if there exists  0T  such that 

0x lies in the interior of   0 ,R tx  for each   0,t T for every proper control set U (Bullo & 
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In case of zero force requested along x with only thrusters acting, the system cannot in 
general provide the requested torque value. 
A key design consideration with this type of control actuator configuration is that with only 
the use of an on/off rotating thruster to provide the necessary torque compensation, fine 
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A system is accessible from 0x (the initial state) if there exists  0T such that the interior of 
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Definition 2 (Proper Small Time Local Controllability) 
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Lewis, 2005). Assuming that at   0x 0  this can also be seen under time reversal as the 
equilibrium for the system 0x  can be reached from a neighborhood in small time (Sussman, 
1987; Sussman, 1990). 
Definition 3 (Proper Control Set) A control set   1 ,...,T

ku uu  is termed to be proper if the set  

satisfies a constraint Ku  where K affinely spans kU . (Sussman, 1990; Bullo & Lewis, 
2005; LaValle, 2006).  
Definition 4 (Lie derivative) The Lie derivative of a smooth scalar function  g x  with 

respect to a smooth vector field   xNf x is a scalar function defined as (Slotine, 1991, pg. 
229) 
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Definition 5 (Lie Bracket):  The Lie bracket of two vector fields   xNf x  and   xNg x is 

a third vector field  , xNf g defined by     ,f g g f f g , where the i-th component can 
be expressed as (Slotine, 1991) 
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Using Lie bracketing methods which produce motions in directions that do not seem to be 
allowed by the system distribution, sufficient conditions can be met to determine a system’s 
STLC even in the presence of a drift vector as in the equations of motion developed above. 
These sufficient conditions involve the Lie Algebra Rank Condition (LARC). 
Definition 6 (Associated Distribution   (x) ) Given a system as in Eq. (6), the associated 

distribution   (x)  is defined as the vector space (subspace  of  xN ) spanned by the system 
vector fields 

   
f,g1 ,...gNu

.  

Definition 7 The Lie algebra of the associated distribution  L  is defined to be the 
distribution of all independent vector fields that can be obtained by applying subsequent Lie 
bracket operations to the system vector fields. Of note, no more than xN  vector fields can be 

produced (LaValle, 2006). With    dim xNL  ,the computation of the elements of  L  
ends either when xN independent vector fields are obtained or when all subsequent Lie 
brackets are  vector fields of zeros.  
Definition 8 (Lie Algebra Rank Condition (LARC)) The Lie Algebra Rank Condition is satisfied 
at a state x  if the rank of the matrix obtained by concatenating the vector fields of the Lie 
algebra distribution at x  is equal to  Nx (the number of state). 
For a driftless control-affine system, following the Chow-Rashevskii Theorem, the system is 
STLC if the LARC is satisfied (Lewis & Murray, 1997; Bullo & Lewis, 2005; LaValle, 2006). 
However, given a system with drift, in order to determine the STLC, the satisfaction of the 

LARC it is not sufficient: in addition to the LARC, it is necessary to examine the 
combinations of the vectors used to compose the Lie brackets of the Lie algebra. From 
Sussman’s General Theorem on Controllability, if the LARC is satisfied and if there are no ill 
formed brackets in  L , then the system is STLC from its equilibrium point (Sussman, 
1987). The Sussman’s theorem, formally stated is reported here below. 
Theorem 1 (Sussman’s General Theorem on Controllability) Consider a system given by Eq. 
(6) and an equilibrium point  xNp such that   f p 0 . Assume  L  satisfies the LARC 
at p . Furthermore, assume that whenever a potential Lie bracket consists of the drift vector 

 f x  appearing an odd number of times while    1 ,...,
uNg x g x  all appear an even number 

of times to include zero times (indicating an ill formed Lie bracket), there are sufficient 
successive Lie brackets to overcome this ill formed Lie bracket to maintain LARC. Then the 
system is STLC from p . (Sussman, 1987; Sussman, 1990).  
As it is common in literature, an ill formed bracket is dubbed a “bad” bracket (Sussman, 
1987; Sussman, 1990; Lewis & Murray, 1997, Bullo & Lewis, 2005; LaValle, 2006). 
Conversely, if a bracket is not “bad”, it is termed “good”. As an example, for a system with a 
drift vector and two control vectors, the bracket    1 1, ,f g g is bad, as the drift vector occurs 
only once while the first control vector appears twice and the second control vector appears 
zero times. Similarly, the bracket      1, , ,f f f g  is good as the first control vector appears 

only once. Therefore, it can be summarized that if the rank of the Lie algebra of a control-
affine system with drift is equal to the number of states and there exist sufficient “good” 
brackets to overcome the “bad” brackets to reach the required LARC rank, then the system 
is small time locally controllable. 

 
4.1 Small-Time Local Controllability Considerations for the 3-DoF Spacecraft 
Simulator 
The concept of small time local controllability is better suitable than the one of accessibility 
for the problem of spacecraft rendezvous and docking, as a spacecraft is required to move in 
any directions in a small interval of time dependent on the control actuator capabilities (e.g. 
to avoid obstacles). The finite time T can be arbitrary if the control input is taken to be 
unbounded and proper (Sussman, 1990; Bullo & Lewis, 2005; LaValle, 2006).  
While no theory yet exists for the study of the general controllability for a non-linear system, 
the STLC from an equilibrium condition can be studied by employing Sussman’s theorem. 
For the case of spacecraft motion, in order to apply Sussman’s theorem, we hypothesize that 
the spacecraft is moving from an initial condition with velocity close to zero (relative to the 
origin of an orbiting reference frame). 
In applying Sussman’s General Theorem on Controllability to the reduced system equations 
of motion presented in Eq. (9) with  1G x  given in Eq. (11), the Lie algebra evaluates to 
 

           1 2 3 1 2 3, , , , , , ,span g g g f g f g f gL  (18) 
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Lewis, 2005). Assuming that at   0x 0  this can also be seen under time reversal as the 
equilibrium for the system 0x  can be reached from a neighborhood in small time (Sussman, 
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Definition 3 (Proper Control Set) A control set   1 ,...,T
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Using Lie bracketing methods which produce motions in directions that do not seem to be 
allowed by the system distribution, sufficient conditions can be met to determine a system’s 
STLC even in the presence of a drift vector as in the equations of motion developed above. 
These sufficient conditions involve the Lie Algebra Rank Condition (LARC). 
Definition 6 (Associated Distribution   (x) ) Given a system as in Eq. (6), the associated 
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STLC if the LARC is satisfied (Lewis & Murray, 1997; Bullo & Lewis, 2005; LaValle, 2006). 
However, given a system with drift, in order to determine the STLC, the satisfaction of the 

LARC it is not sufficient: in addition to the LARC, it is necessary to examine the 
combinations of the vectors used to compose the Lie brackets of the Lie algebra. From 
Sussman’s General Theorem on Controllability, if the LARC is satisfied and if there are no ill 
formed brackets in  L , then the system is STLC from its equilibrium point (Sussman, 
1987). The Sussman’s theorem, formally stated is reported here below. 
Theorem 1 (Sussman’s General Theorem on Controllability) Consider a system given by Eq. 
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at p . Furthermore, assume that whenever a potential Lie bracket consists of the drift vector 
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of times to include zero times (indicating an ill formed Lie bracket), there are sufficient 
successive Lie brackets to overcome this ill formed Lie bracket to maintain LARC. Then the 
system is STLC from p . (Sussman, 1987; Sussman, 1990).  
As it is common in literature, an ill formed bracket is dubbed a “bad” bracket (Sussman, 
1987; Sussman, 1990; Lewis & Murray, 1997, Bullo & Lewis, 2005; LaValle, 2006). 
Conversely, if a bracket is not “bad”, it is termed “good”. As an example, for a system with a 
drift vector and two control vectors, the bracket    1 1, ,f g g is bad, as the drift vector occurs 
only once while the first control vector appears twice and the second control vector appears 
zero times. Similarly, the bracket      1, , ,f f f g  is good as the first control vector appears 

only once. Therefore, it can be summarized that if the rank of the Lie algebra of a control-
affine system with drift is equal to the number of states and there exist sufficient “good” 
brackets to overcome the “bad” brackets to reach the required LARC rank, then the system 
is small time locally controllable. 

 
4.1 Small-Time Local Controllability Considerations for the 3-DoF Spacecraft 
Simulator 
The concept of small time local controllability is better suitable than the one of accessibility 
for the problem of spacecraft rendezvous and docking, as a spacecraft is required to move in 
any directions in a small interval of time dependent on the control actuator capabilities (e.g. 
to avoid obstacles). The finite time T can be arbitrary if the control input is taken to be 
unbounded and proper (Sussman, 1990; Bullo & Lewis, 2005; LaValle, 2006).  
While no theory yet exists for the study of the general controllability for a non-linear system, 
the STLC from an equilibrium condition can be studied by employing Sussman’s theorem. 
For the case of spacecraft motion, in order to apply Sussman’s theorem, we hypothesize that 
the spacecraft is moving from an initial condition with velocity close to zero (relative to the 
origin of an orbiting reference frame). 
In applying Sussman’s General Theorem on Controllability to the reduced system equations 
of motion presented in Eq. (9) with  1G x  given in Eq. (11), the Lie algebra evaluates to 
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so that     dim 6xNL . In order to verify that this is the minimum number of actuators 
required to ensure STLC, the Lie algebra is reinvestigated for each possible combination of 
controls. The resulting analysis, as summarized in Table 2, demonstrates that the system is 
STLC from the systems equilibrium point at 0x 0  given either two rotating thrusters in 
complementary semi-circle planes or fixed thrusters on opposing faces providing a normal 
force vector to the face in opposing directions and a momentum exchange device about the 
center of mass. For instance, in considering the case of control inputs ,B B

y z MEDF T T  , Eq. (9) 
becomes 

 
     

     
  

        
 1 1 2 2

1 1 1 1
4 5 6 3 3 1 2, , ,0,0,0 0,0,0, , , 0,0,0,0,0,

T TT
z z

u u

x x x m sx m cx J L u J u

x f x g x g x
 (19) 

where        2
1 2, ,B B

y zu u F Tu U . The equilibrium point p  such that   f p 0  is 

  1 2 3, , ,0,0,0 Tx x xp . The  L is formed by considering the associated distribution   (x)  
and successive Lie brackets as 
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The sequence can first be reduced by considering any “bad” brackets in which the drift 
vector appears an odd number of times and the control vector fields each appear an even 
number of times to include zero. In this manner the Lie brackets    1 1, ,g f g  

and    2 2, ,g f g  can be disregarded. 
By evaluating each remaining Lie bracket at the equilibrium point p , the linearly 
independent vector fields can be found as  
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Therefore, the Lie algebra comprised of these vector fields is  
 

                     1 2 1 2 1 2 1 1, , , , , , , , , , , ,span g g f g f g g f g f g f gL  (21) 

 
yielding     dim 6xNL , and therefore the system is small time locally controllable. 
 

Control Thruster Positions   dim L  Controllability 

   ,0,0T B
xFu    1 2 0  2 Inaccessible 

   0, ,0T B
yFu       1 2 2  2 Inaccessible 

   0,0,T B
zTu  NA 2 Inaccessible 

   0, ,T B B
y z j jF T F Lsu        2 , 2i j  5 Inaccessible 

   , ,0T B B
x yF Fu      1 22 , 2  6 STLC 

   ,0,T B B
x zF Tu    1 2 0  6 STLC 

   0, ,T B B
y z MEDF T Tu       1 2 2  6 STLC 

Table 2. STLC Analysis for the 3-DoF Spacecraft Simulator 

 
5. Navigation and Control of the 3-DoF Spacecraft Simulator 
 

In the current research, the assumption is made that the spacecraft simulator is maneuvering 
in the proximity of an attitude stabilized target spacecraft and that this spacecraft follows a 
Keplarian orbit. Furthermore, the proximity navigation maneuvers are considered to be fast 
with respect to the orbital period. A pseudo-GPS inertial measurement system by Metris, 
Inc. (iGPS) is used to fix the ICS in the laboratory setting for the development of the state 
estimation algorithm and control commands. The X-axis is taken to be the vector between 
the two iGPS transmitters with the Y and Z axes forming a right triad through the origin of a 
reference system located at the closest corner of the epoxy floor to the first iGPS transmitter. 
Navigation is provided by fusing of the magnetometer data and fiber optic gyro through a 
discrete Kalman filter to provide attitude estimation and through the use of a linear 
quadratic estimator to estimate the translation velocities given inertial position 
measurements. Control is accomplished through the combination of a state feedback 
linearized based controller, a linear quadratic regulator, Schmitt trigger logic and Pulse 
Width Modulation using the minimal control actuator configuration of the 3-DoF spacecraft 
simulator. Fig. 4 reports a block diagram representation of the control system. 
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so that     dim 6xNL . In order to verify that this is the minimum number of actuators 
required to ensure STLC, the Lie algebra is reinvestigated for each possible combination of 
controls. The resulting analysis, as summarized in Table 2, demonstrates that the system is 
STLC from the systems equilibrium point at 0x 0  given either two rotating thrusters in 
complementary semi-circle planes or fixed thrusters on opposing faces providing a normal 
force vector to the face in opposing directions and a momentum exchange device about the 
center of mass. For instance, in considering the case of control inputs ,B B
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where        2
1 2, ,B B

y zu u F Tu U . The equilibrium point p  such that   f p 0  is 
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The sequence can first be reduced by considering any “bad” brackets in which the drift 
vector appears an odd number of times and the control vector fields each appear an even 
number of times to include zero. In this manner the Lie brackets    1 1, ,g f g  

and    2 2, ,g f g  can be disregarded. 
By evaluating each remaining Lie bracket at the equilibrium point p , the linearly 
independent vector fields can be found as  
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(20) 

 

Therefore, the Lie algebra comprised of these vector fields is  
 

                     1 2 1 2 1 2 1 1, , , , , , , , , , , ,span g g f g f g g f g f g f gL  (21) 

 
yielding     dim 6xNL , and therefore the system is small time locally controllable. 
 

Control Thruster Positions   dim L  Controllability 

   ,0,0T B
xFu    1 2 0  2 Inaccessible 

   0, ,0T B
yFu       1 2 2  2 Inaccessible 

   0,0,T B
zTu  NA 2 Inaccessible 

   0, ,T B B
y z j jF T F Lsu        2 , 2i j  5 Inaccessible 

   , ,0T B B
x yF Fu      1 22 , 2  6 STLC 

   ,0,T B B
x zF Tu    1 2 0  6 STLC 

   0, ,T B B
y z MEDF T Tu       1 2 2  6 STLC 

Table 2. STLC Analysis for the 3-DoF Spacecraft Simulator 

 
5. Navigation and Control of the 3-DoF Spacecraft Simulator 
 

In the current research, the assumption is made that the spacecraft simulator is maneuvering 
in the proximity of an attitude stabilized target spacecraft and that this spacecraft follows a 
Keplarian orbit. Furthermore, the proximity navigation maneuvers are considered to be fast 
with respect to the orbital period. A pseudo-GPS inertial measurement system by Metris, 
Inc. (iGPS) is used to fix the ICS in the laboratory setting for the development of the state 
estimation algorithm and control commands. The X-axis is taken to be the vector between 
the two iGPS transmitters with the Y and Z axes forming a right triad through the origin of a 
reference system located at the closest corner of the epoxy floor to the first iGPS transmitter. 
Navigation is provided by fusing of the magnetometer data and fiber optic gyro through a 
discrete Kalman filter to provide attitude estimation and through the use of a linear 
quadratic estimator to estimate the translation velocities given inertial position 
measurements. Control is accomplished through the combination of a state feedback 
linearized based controller, a linear quadratic regulator, Schmitt trigger logic and Pulse 
Width Modulation using the minimal control actuator configuration of the 3-DoF spacecraft 
simulator. Fig. 4 reports a block diagram representation of the control system. 
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Fig. 4. Block Diagram of the Control System of the 3-DoF Spacecraft simulator 

 
5.1 Navigation using Inertial Measurements with Kalman Filter and Linear Quadratic 
Estimator 
In the presence of the high accuracy, low noise, high bandwidth iGPS sensor with position 
accuracy to within 5.4 mm with a standard deviation of 3.6 mm and asynchronous 
measurement availability with a nominal frequency of 40 Hz, a full-order linear quadratic 
estimator with respect to the translation states is implemented to demonstrate the capability 
to estimate the inertial velocities in the absence of accelerometers. Additionally, due to the 
affect of noise and drift rate in the fiber-optic gyro, a discrete-time linear Kalman filter is 
employed to fuse the data from the magnetometer and the gyro. Both the gyro and 
magnetometer are capable of providing new measurements asynchronously at 100 Hz. 

 
5.1.1 Attitude Discrete-Time Kalman Filter 
With the attitude rate being directly measured, the measurement process can be modeled in 
state-space equation form as: 
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


    
                                 

 

0 1 1 1 0
0 0 0 0 1

z g
g

g g g

BA G

 (22) 

   
 
     

1 0m m
g

z
H

 (23) 

where g  is the measured gyro rate, g  is the gyro drift rate,    and g g  are the 
associated gyro output measurement noise and the drift rate noise respectively. m  is the 
measured angle from the magnetometer, and  m is the associated magnetometer output 
measurement noise. It is assumed that     ,  and g g m  are zero-mean Gaussian white-

noise processes with variances given by      2 2 2,   and g g m  respectively. Introducing the 

state variables     ,T
gx , control variables  gu , and error variables      ,T

g gw  

and  mv , Eqs. (22) and (23) can be expressed compactly in matrix form as 
 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )t A t t B t t G t tx x u w  (24) 
  ( ) ( ) ( )t H t tz x v  (25) 

 
In assuming a constant sampling interval t  in the gyro output, the system equation Eq. 
(24) and observation equations Eq. (25) can be discretized and rewritten as 
 

       1k k k k k k kx x u w  (26) 
  k k k kHz x v  (27) 

where 

        
1
0 1

t
k

t
eA  (28) 

and 

         
0 0

t
A

k

t
e Bd  (29) 

 
The process noise covariance matrix used in the propagation of the estimation error 
covariance given by (Gelb, 1974; Crassidis & Junkins, 2004) 
 

            
      1 1

1 1( , ) ( ) ( ) ( ) ( ) ( , )k k

k k

t tT T T
k k k k kt t
Q t G E G t d dw w  (30) 

 
can be properly numerically estimated given a sufficiently small sampling interval by 
following the numerical solution by van Loan (Crassidis & Junkins, 2004). First, the 
following 2n x 2n matrix is formed: 
 

 
    0

T

T

A GQG
t

A
A  (31) 

 
where t  is the constant sampling interval, A and G are the constant continuous-time state 
matrix and error distribution matrix given in Eq. (24),  and Q is the constant continuous-
time process noise covariance matrix 
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Fig. 4. Block Diagram of the Control System of the 3-DoF Spacecraft simulator 

 
5.1 Navigation using Inertial Measurements with Kalman Filter and Linear Quadratic 
Estimator 
In the presence of the high accuracy, low noise, high bandwidth iGPS sensor with position 
accuracy to within 5.4 mm with a standard deviation of 3.6 mm and asynchronous 
measurement availability with a nominal frequency of 40 Hz, a full-order linear quadratic 
estimator with respect to the translation states is implemented to demonstrate the capability 
to estimate the inertial velocities in the absence of accelerometers. Additionally, due to the 
affect of noise and drift rate in the fiber-optic gyro, a discrete-time linear Kalman filter is 
employed to fuse the data from the magnetometer and the gyro. Both the gyro and 
magnetometer are capable of providing new measurements asynchronously at 100 Hz. 

 
5.1.1 Attitude Discrete-Time Kalman Filter 
With the attitude rate being directly measured, the measurement process can be modeled in 
state-space equation form as: 
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where g  is the measured gyro rate, g  is the gyro drift rate,    and g g  are the 
associated gyro output measurement noise and the drift rate noise respectively. m  is the 
measured angle from the magnetometer, and  m is the associated magnetometer output 
measurement noise. It is assumed that     ,  and g g m  are zero-mean Gaussian white-

noise processes with variances given by      2 2 2,   and g g m  respectively. Introducing the 

state variables     ,T
gx , control variables  gu , and error variables      ,T

g gw  

and  mv , Eqs. (22) and (23) can be expressed compactly in matrix form as 
 

   ( ) ( ) ( ) ( ) ( ) ( ) ( )t A t t B t t G t tx x u w  (24) 
  ( ) ( ) ( )t H t tz x v  (25) 

 
In assuming a constant sampling interval t  in the gyro output, the system equation Eq. 
(24) and observation equations Eq. (25) can be discretized and rewritten as 
 

       1k k k k k k kx x u w  (26) 
  k k k kHz x v  (27) 

where 

        
1
0 1
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and 

         
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The process noise covariance matrix used in the propagation of the estimation error 
covariance given by (Gelb, 1974; Crassidis & Junkins, 2004) 
 

            
      1 1

1 1( , ) ( ) ( ) ( ) ( ) ( , )k k
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t tT T T
k k k k kt t
Q t G E G t d dw w  (30) 

 
can be properly numerically estimated given a sufficiently small sampling interval by 
following the numerical solution by van Loan (Crassidis & Junkins, 2004). First, the 
following 2n x 2n matrix is formed: 
 

 
    0

T

T

A GQG
t

A
A  (31) 

 
where t  is the constant sampling interval, A and G are the constant continuous-time state 
matrix and error distribution matrix given in Eq. (24),  and Q is the constant continuous-
time process noise covariance matrix 
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