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PREFACE 

 This introduction to Group Theory, with its emphasis on Lie 

Groups and their application to the study of symmetries of the 

fundamental constituents of matter, has its origin in a one-semester 

course that I taught at Yale University for more than ten years.  The 

course was developed for Seniors, and advanced Juniors, majoring 

in the Physical Sciences.  The students had generally completed the 

core courses for their majors, and had taken intermediate level 

courses in Linear Algebra, Real and Complex Analysis, Ordinary 

Linear Differential Equations, and some of the Special Functions of 

Physics.  Group Theory was not a mathematical requirement for a 

degree in the Physical Sciences.  The majority of existing 

undergraduate textbooks on Group Theory and its applications in 

Physics tend to be either highly qualitative or highly mathematical.  

The purpose of this introduction is to steer a middle course that 

provides the student with a sound mathematical basis for studying 

the symmetry properties of the fundamental particles.  It is not 

generally appreciated by Physicists that continuous transformation 

groups (Lie Groups) originated in the Theory of Differential 

Equations.  The infinitesimal generators of Lie Groups therefore 

have forms that involve differential operators and their commutators, 

and these operators and their algebraic properties have found, and 

continue to find, a natural place in the development of Quantum 

Physics. 

      Guilford, CT. 

                June, 2000. 
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1 

INTRODUCTION 

 The notion of geometrical symmetry in Art and in Nature is 

a familiar one.  In Modern Physics, this notion has evolved to 

include symmetries of an abstract kind.  These new symmetries play 

an essential part in the theories of the microstructure of matter.  The 

basic symmetries found in Nature seem to originate in the 

mathematical structure of the laws themselves, laws that govern the 

motions of the galaxies on the one hand and the motions of quarks 

in nucleons on the other. 

 In the Newtonian era, the laws of Nature were deduced from 

a small number of imperfect observations by a small number of 

renowned scientists and mathematicians.  It was not until the 

Einsteinian era, however, that the significance of the symmetries 

associated with the laws was fully appreciated.  The discovery of 

space-time symmetries has led to the widely held belief that the 

laws of Nature can be derived from symmetry, or invariance, 

principles.  Our incomplete knowledge of the fundamental 

interactions means that we are not yet in a position to confirm this 

belief.  We therefore use arguments based on empirically 

established laws and restricted symmetry principles to guide us in 

our search for the fundamental symmetries.  Frequently, it is 

important to understand why the symmetry of a system is observed 

to be broken. 

 In Geometry, an object with a definite shape, size, location, 

and orientation constitutes a state whose symmetry properties, or 

invariants, are to be studied.  Any transformation that leaves the 

state unchanged in form is called a symmetry transformation.  The 
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greater the number of symmetry transformations that a state can 

undergo, the higher its symmetry.  If the number of conditions that 

define the state is reduced then the symmetry of the state is 

increased.  For example, an object characterized by oblateness alone 

is symmetric under all transformations except a change of shape. 

 In describing the symmetry of a state of the most general 

kind (not simply geometric), the algebraic structure of the set of 

symmetry operators must be given; it is not sufficient to give the 

number of operations, and nothing else.  The law of combination of 

the operators must be stated.  It is the algebraic group that fully 

characterizes the symmetry of the general state. 

 The Theory of Groups came about unexpectedly.  Galois 

showed that an equation of degree n, where n is an integer greater 

than or equal to five cannot, in general, be solved by algebraic 

means.  In the course of this great work, he developed the ideas of 

Lagrange, Ruffini, and Abel and introduced the concept of a group.  

Galois discussed the functional relationships among the roots of an 

equation, and showed that they have symmetries associated with 

them under permutations of the roots. 

 The operators that transform one functional relationship 

into another are elements of a set that is characteristic of the 

equation; the set of operators is called the Galois group of the 

equation.   

 In the 1850’s, Cayley showed that every finite group is 

isomorphic to a certain permutation group.  The geometrical 

symmetries of crystals are described in terms of finite groups.  

These symmetries are discussed in many standard works (see 

bibliography) and therefore, they will not be discussed in this book. 
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 In the brief period between 1924 and 1928, Quantum 

Mechanics was developed. Almost immediately, it was recognized 

by Weyl, and by Wigner, that certain parts of Group Theory could 

be used as a powerful analytical tool in Quantum Physics.  Their 

ideas have been developed over the decades in many areas that 

range from the Theory of Solids to Particle Physics. 

 The essential role played by groups that are characterized by 

parameters that vary continuously in a given range was first 

emphasized by Wigner.  These groups are known as Lie Groups.  

They have become increasingly important in many branches of 

contemporary physics, particularly Nuclear and Particle Physics.  

Fifty years after Galois had introduced the concept of a group in the 

Theory of Equations, Lie introduced the concept of a continuous 

transformation group in the Theory of Differential Equations.  Lie’s 

theory unified many of the disconnected methods of solving 

differential equations that had evolved over a period of two hundred 

years.  Infinitesimal unitary transformations play a key role in 

discussions of the fundamental conservation laws of Physics. 

 In Classical Dynamics, the invariance of the equations of 

motion of a particle, or system of particles, under the Galilean 

transformation is a basic part of everyday relativity.  The search for 

the transformation that leaves Maxwell’s equations of 

Electromagnetism unchanged in form (invariant) under a linear 

transformation of the space-time coordinates, led to the discovery of 

the Lorentz transformation.  The fundamental importance of this 

transformation, and its related invariants, cannot be overstated. 
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2 

GALOIS GROUPS 

     In the early 19th - century, Abel proved that it is not possible to 

solve the general polynomial equation of degree greater than four by 

algebraic means.  He attempted to characterize all equations that can 

be solved by radicals.  Abel did not solve this fundamental problem.  

The problem was taken up and solved by one of the greatest innovators 

in Mathematics, namely, Galois. 

2.1. Solving cubic equations 

 The main ideas of the Galois procedure in the Theory of 

Equations, and their relationship to later developments in Mathematics 

and Physics, can be introduced in a plausible way by considering the 

standard problem of solving a cubic equation.  

 Consider solutions of the general cubic equation 

 Ax3 + 3Bx2 + 3Cx + D = 0,                           

where A − D are rational constants. 

If the substitution y = Ax + B is made, the equation becomes 

               y3 + 3Hy + G = 0                          

where 

            H = AC − B2                                          

and 

            G = A2D − 3ABC + 2B3.                      

The cubic has three real roots if G2 + 4H3 < 0 and two imaginary roots 

if G2 + 4H3 > 0.  (See any standard work on the Theory of Equations). 

 If all the roots are real, a trigonometrical method can be used to 

obtain the solutions, as follows: 

 the Fourier series of cos3u is  
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            cos3u = (3/4)cosu + (1/4)cos3u.            

Putting 

           y = scosu in the equation y3 + 3Hy + G = 0 (s > 0), 

gives 

           cos3u + (3H/s2)cosu + G/s3 = 0.                                              

Comparing the Fourier series with this equation leads to 

                   s = 2 √(−H)  

and 

            cos3u = −4G/s3                                    

If v is any value of u satisfying cos3u = −4G/s3, the general solution is 

                                                  3u = 2nπ ± 3v, ( n is an integer).     

Three different values of cosu are given by 

                   u = v, and 2π/3 ± v.                     

The three solutions of the given cubic equation are then 

                      scosv, and scos(2π/3 ± v).                           

 Consider solutions of the equation 

              x3 − 3x + 1 = 0.                                            

In this case, 

         H = −1 and G2 + 4H3 = −3.                                          

All the roots are therefore real, and they are given by solving 

             cos3u = −4G/s3 = −4(1/8) = −1/2                                        

or, 

                            3u = cos-1(−1/2).                            

The values of u are therefore 2π/9, 4π/9, and 8π/9, and the roots are 

       x1 = 2cos(2π/9), x2 = 2cos(4π/9), and x3 = 2cos(8π/9).            
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2.2. Symmetries of the roots 

 The roots x1, x2, and x3 exhibit a simple pattern.  Relationships 

among them can be readily found by writing them in the complex 

form: 

2cosθ = eiθ + e-iθ where θ = 2π/9, so that 

                  x1 = eiθ + e-iθ ,           

                  x2 = e2iθ + e-2iθ ,           

and 

       x3 = e4iθ + e-4iθ .           

Squaring these values gives 

                 x1
2 = x2 + 2,            

                 x2
2 = x3 + 2,            

and 

                 x3
2 = x1 + 2.            

The relationships among the roots have the functional form f(x1,x2,x3) 

= 0.  Other relationships exist; for example, by considering the sum of 

the roots we find 

      x1 + x2
2 + x2 − 2 = 0             

      x2 + x3
2 + x3 − 2 = 0,            

and 

      x3 + x1
2 + x1 − 2 = 0.            

Transformations from one root to another can be made by doubling-

the-angle, θ. 

 The functional relationships among the roots have an algebraic 

symmetry associated with them under interchanges (substitutions) of 

the roots.  If O is the operator that changes f(x1,x2,x3) into f(x2,x3,x1) 

then 
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           Of(x1,x2,x3)  → f(x2,x3,x1), 

           O2f(x1,x2,x3) → f(x3,x1,x2), 

and 

           O3f(x1,x2,x3) → f(x1,x2,x3). 

The operator O3 = I, is the identity. 

In the present case, 

        O(x1
2 − x2 − 2) = (x2

2 − x3 − 2) = 0,          

and 

       O2(x1
2 − x2 − 2) = (x3

2 − x1 − 2) = 0.                

2.3. The Galois group of an equation. 

 The set of operators {I, O, O2} introduced above, is called the 

Galois group of the equation x3 − 3x + 1 = 0. (It will be shown later 

that it is isomorphic to the cyclic group, C3). 

 The elements of a Galois group are operators that interchange 

the roots of an equation in such a way that the transformed functional 

relationships are true relationships.  For example, if the equation 

       x1 + x2
2 + x2 − 2 = 0            

is valid, then so is 

             O(x1 + x2
2 + x2 − 2 ) = x2 + x3

2 + x3 − 2 = 0.             

True functional relationships are polynomials with rational 

coefficients. 

2.4. Algebraic fields 

 We now consider the Galois procedure in a more general way.  

An algebraic solution of the general nth - degree polynomial 

             aoxn + a1xn-1 + ... an = 0             

is given in terms of the coefficients ai using a finite number of 

operations (+,-,×,÷,√).  The term "solution by radicals" is sometimes 



 

12 

used because the operation of extracting a square root is included in 

the process.  If an infinite number of operations is allowed, solutions 

of the general polynomial can be obtained using transcendental 

functions.  The coefficients ai necessarily belong to a field which is 

closed under the rational operations.  If the field is the set of rational 

numbers, Q, we need to know whether or not the solutions of a given 

equation belong to Q.  For example, if 

            x2 − 3 = 0            

we see that the coefficient -3 belongs to Q, whereas the roots of the 

equation,  xi = ± √3, do not.  It is therefore necessary to extend Q to Q', 

(say) by adjoining numbers of the form a√3 to Q, where a is in Q. 

 In discussing the cubic equation x3 − 3x + 1 = 0 in 2.2, we 

found certain functions of the roots f(x1,x2,x3) = 0 that are symmetric 

under permutations of the roots.  The symmetry operators formed the 

Galois group of the equation.  

 For a general polynomial: 

                xn + a1xn-1 + a2xn-2 + .. an = 0,            

functional relations of the roots are given in terms of the coefficients in 

the standard way 

     x1 + x2 + x3 …                              … + xn  = −a1                           

     x1x2 + x1x3 + … x2x3 + x2x4 + … + xn-1xn  =  a2           

     x1x2x3 + x2x3x4 + …                 + xn-2xn-1xn = −a3            

     .     . 

     x1x2x3 …                                      … xn-1xn =  ±an.           

 Other symmetric functions of the roots can be written in terms 

of these basic symmetric polynomials and, therefore, in terms of the 

coefficients.  Rational symmetric functions also can be constructed 
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that involve the roots and the coefficients of a given equation.  For 

example, consider the quartic 

           x4 + a2x2 + a4 = 0.                                  

The roots of this equation satisfy the equations 

                   x1 + x2 + x3 + x4 = 0             

                   x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4 = a2          

                   x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = 0           

                   x1x2x3x4 = a4.              

 We can form any rational symmetric expression from these 

basic equations (for example, (3a4
3 − 2a2)/2a4

2 = f(x1,x2,x3,x4)).  In 

general, every rational symmetric function that belongs to the field F 

of the coefficients, ai, of a general polynomial equation can be written 

rationally in terms of the coefficients. 

 The Galois group, Gal, of an equation associated with a field F 

therefore has the property that if a rational function of the roots of the 

equation is invariant under all permutations of Gal, then it is equal to a 

quantity in F. 

 Whether or not an algebraic equation can be broken down into 

simpler equations is important in the theory of equations.  Consider, 

for example, the equation 

                             x6 = 3.              

It can be solved by writing  x3 = y, y2 = 3 or 

                   x = (√3)1/3.             

 To solve the equation, it is necessary to calculate square and 

cube roots  not sixth roots.  The equation x6 = 3 is said to be 

compound (it can be broken down into simpler equations), whereas x2 

= 3 is said to be atomic.  The atomic properties of the Galois group of 
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an equation reveal the atomic nature of the equation, itself.  (In 

Chapter 5, it will be seen that a group is atomic ("simple") if it 

contains no proper invariant subgroups). 

 The determination of the Galois groups associated with an 

arbitrary polynomial with unknown roots is far from straightforward.  

We can gain some insight into the Galois method, however, by 

studying the group structure of the quartic 

                      x4 + a2x2 + a4 = 0 

with known roots 

                 x1 = ((−a2 + µ)/2)1/2 , x2 = −x1, 

                 x3 = ((−a2 − µ)/2)1/2 , x4 = −x3, 

where 

                               µ = (a2
2 − 4a4)1/2. 

 The field F of the quartic equation contains the rationals Q, and 

the rational expressions formed from the coefficients a2 and a4. 

 The relations 

                 x1 + x2 = x3 + x4 = 0 

are in the field F. 

 Only eight of the 4! possible permutations of the roots leave 

these relations invariant in F; they are 

             x1 x2 x3 x4              x1 x2 x3 x4             x1 x2 x3 x4 

{ P1 =                    ,  P2 =                    ,  P3 =                  ,  

             x1 x2 x3 x4              x1 x2 x4 x3             x2 x1 x3 x4   

   

             x1 x2 x3 x4              x1 x2 x3 x4             x1 x2 x3 x4    

   P4 =                      , P5 =                    ,  P6 =                  , 

             x2 x1 x4 x3              x3 x4 x1 x2             x3 x4 x2 x1   
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             x1 x2 x3 x4              x1 x2 x3 x4     

   P7 =                      , P8  =                   }. 

             x4 x3 x1 x2              x4 x3 x2 x1    

 

The set {P1,...P8} is the Galois group of the quartic in F.  It is a 

subgroup of the full set of twentyfour permutations.  We can form an 

infinite number of true relations among the roots in F.  If we extend 

the field F by adjoining irrational expressions of the coefficients, other 

true relations among the roots can be formed in the extended field, F'.  

Consider, for example, the extended field formed by adjoining µ (= 

(a2
2 − 4a4)) to F so that the relation 

                   x1
2 − x3

2 = µ is in F'. 

We have met the relations  

                            x1  = −x2  and x3  = −x4 

so that 

                            x1
2 =  x2

2 and x3
2 =  x4

2. 

Another relation in F' is therefore 

                    x2
2 − x4

2 = µ. 

The permutations that leave these relations true in F' are then 

    {P1, P2, P3, P4}. 

This set is the Galois group of the quartic in F'.  It is a subgroup of the 

set {P1,...P8}. 

 If we extend the field F' by adjoining the irrational expression            

((−a2 − µ)/2)1/2 to form the field F'' then the relation 

                      x3 − x4 = 2((−a2 − µ)/2)1/2 is in F''. 

This relation is invariant under the two permutations {P1, P3}. 
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This set is the Galois group of the quartic in F''.  It is a subgroup of the 

set 

{P1, P2, P3, P4}. 

 If, finally, we extend the field F'' by adjoining the irrational                

((−a2 + µ)/2)1/2 to form the field F''' then the relation 

                       x1 − x2 = 2((−a2 − µ)/2)1/2 is in F'''. 

This relation is invariant under the identity transformation, P1 , alone; 

it is the Galois group of the quartic in F''.   

 The full group, and the subgroups, associated with the quartic 

equation are of order 24, 8, 4, 2, and 1.  (The order of a group is the 

number of distinct elements that it contains).  In 5.4, we shall prove 

that the order of a subgroup is always an integral divisor of the order 

of the full group.  The order of the full group divided by the order of a 

subgroup is called the index of the subgroup. 

 Galois introduced the idea of a normal or invariant subgroup: if 

H is a normal subgroup of G then 

            HG − GH = [H, G] = 0. 

(H commutes with every element of G, see 5.5). 

Normal subgroups are also called either invariant or self-conjugate 

subgroups.  A normal subgroup H is maximal if no other subgroup of 

G contains H. 

2.5. Solvability of polynomial equations 

 Galois defined the group of a given polynomial equation to be 

either the symmetric group, Sn, or a subgroup of Sn, (see 5.6).  The 

Galois method therefore involves the following steps: 

1.  The determination of the Galois group, Gal, of the equation. 
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2.  The choice of a maximal subgroup of Hmax(1).  In the above case, 

{P1, ...P8} is a maximal subgroup of Gal = S4. 

3.  The choice of a maximal subgroup of Hmax(1) from step 2.  

In the above case, {P1,..P4} = Hmax(2) is a maximal subgroup of Hmax(1). 

The process is continued until Hmax = {P1} = {I}.  

 The groups Gal, Hmax(1), ..,Hmax(k) = I, form a composition series.  

The composition indices are given by the ratios of the successive 

orders of the groups: 

   gn/h(1), h(1)/h(2), ...h(k-1)/1. 

The composition indices of the symmetric groups Sn for n = 2 to 7 are 

found to be: 

      n   Composition Indices 

      2   2 

      3   2, 3 

      4   2, 3, 2, 2 

      5   2, 60 

      6   2, 360 

      7   2, 2520 

We state, without proof, Galois' theorem: a polynomial equation can 

be solved algebraically if and only if its group is solvable. 

 Galois defined a solvable group as one in which the 

composition indices are all prime numbers.  Furthermore, he showed 

that if n > 4, the sequence of maximal normal subgroups is Sn, An, I, 

where An is the Alternating Group with (n!)/2 elements.  The 

composition indices are then 2 and (n!)/2.  For n > 4, however, (n!)/2 

is not prime, therefore the groups Sn are not solvable for n > 4.  Using 

Galois' Theorem, we see that it is therefore not possible to solve, 

algebraically, a general polynomial equation of degree n > 4. 
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