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Annotation
A new solution of Maxwell equations for a vacuum, for wire with 
constant and alternating current, for the capacitor, for the sphere, etc. is 
presented. First it must be noted that the proof of the solution's 
uniqueness is based on the Law of energy conservation which is 
not observed (for instantaneous values) in the known solution. 
The solution offered:
 Describes wave in vacuum and wave in wire;
 Complies with the energy conservation law in each moment 

of time, i.e. sets constant density of electromagnetic energy 
flux;

 Reveals phase shifting between electrical and magnetic 
intensities;

 Explains existence of energy flux along the wire that is equal 
to the power consumed.

The work offers some technical applications of the solution 
obtained. A detailed proof is given for interested readers.
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1. Introduction
“To date, whatsoever effect that would request a modification of 

Maxwell’s equations escaped detection” [36]. Nevertheless, recently 
criticism of validity of Maxwell equations is heard from all sides. Have a 
look at the Fig.1 that shows a wave being a known solution of Maxwell’s 
equations. The confidence of critics is created first of all by the violation 
of the Law of energy conservation. And certainly "the density of 
electromagnetic energy flow (the module of Umov-Pointing vector) pulsates 
harmonically. Doesn't it violate the Law of energy conservation?" [1]. Certainly, it is 
violated, if the electromagnetic wave satisfies the known solution of 
Maxwell equations. But there is no other solution: "The proof of solution's 
uniqueness in general is as follows. If there are two different solutions, then their 
difference due to the system's linearity, will also be a solution, but for zero charges and 
currents and for zero initial conditions. Hence, using the expression for electromagnetic 
field energy we must conclude that the difference between solutions is equal to zero, 
which means that the solutions are identical. Thus the uniqueness of Maxwell 
equations solution is proved"   [2]. So, the uniqueness of solution is being 
proved on the base of using the law which is violated in this solution.

Another result following from the existing solution of Maxwell 
equations is phase synchronism of electrical and magnetic components of 
intensities in an electromagnetic wave. This is contrary to the idea of 
constant transformation of electrical and magnetic components of energy 
in an electromagnetic wave. In [1[, for example, this fact is called "one of 
the vices of the classical electrodynamics".
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Рис. 1.

Such results following from the known solution of Maxwell 
equations allow doubting the authenticity of Maxwell equations. 
However, we must stress that these results follow only from the found 
solution. But this solution, as has been stated above, can be different (in 
their partial derivatives, equations generally have several solutions).

Further we shall deduct another solution of Maxwell equation, in 
which the density of electromagnetic energy flow remains constant in 
time, and electrical and magnetic components of intensities in the 
electromagnetic wave are shifted in in phase. 

In addition, consider an electromagnetic wave in wire. With an 
assumed negligibly low voltage, Maxwell’s equations for this wave literally 
coincide with those for the wave in vacuum. Yet, electrical engineering 
eludes any known solution and employs the one that connects an 
intensity of the circular magnetic field with the current in the wire (for 
brevity, it will be referred to as “electrical engineering solution”). This 
solution, too, satisfies the Maxwell’s equations. However, firstly, it is one 
more solution of those equations (which invalidates the theorem of the 
only solution known). Secondly, and the most important, electrical 
engineering solution does not explain the famous experimental fact.

The case in point is skin-effect. Solution to explain skin-effect 
should contain a non-linear radius-to-displacement current (flowing 
along the wire) dependence. According to Maxwell’s equations, such 
dependence should fit with radial and circular electrical and magnetic 
intensities that have non-linear dependence from the radius. Electrical 
engineering solution offers none of these. Explanation of skin-effect 
bases on the Maxwell’s equations, yet it does not follow from electrical 
engineering solution. It allows the statement that electrical engineering 
solution does not explain the famous experimental fact.
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2. On Energy Flux in Wire 
Now, refer to energy flux in wire. The existing idea of energy 

transfer through the wires is that the energy in a certain way is spreading 
outside the wire [13]: "… so our “crazy” theory says that the electrons are getting 
their energy to generate heat because of the energy flowing into the wire from the field 
outside. Intuition would seem to tell us that the electrons get their energy from being 
pushed along the wire, so the energy should be flowing down (or up) along the wire. But 
the theory says that the electrons are really being pushed by an electric field, which has 
come from some charges very far away, and that the electrons get their energy for 
generating heat from these fields. The energy somehow flows from the distant charges 
into a wide area of space and then inward to the wire."

Such theory contradicts the Law of energy conservation. Indeed, 
the energy flow, travelling in the space must lose some part of the energy. 
But this fact was found neither experimentally, nor theoretically. But, 
most important, this theory contradicts the following experiment. Let us 
assume that through the central wire of coaxial cable runs constant 
current. This wire is isolated from the external energy flow. Then whence 
the energy flow compensating the heat losses in the wire comes? With 
the exception of loss in wire, the flux should penetrate into a load, e.g. 
winding of electrical motors covered with steel shrouds of the stator. 
This matter is omitted in the discussions of the existing theory.

So, the existing theory claims that the incoming (perpendicularly to 
the wire) electromagnetic flow permits the current to overcome the 
resistance to movement and performs work that turns into heat. This 
known conclusion veils the natural question: how can the current attract 
the flow, if the current appears due to the flow? It is natural to assume 
that the flow creates a certain emf which "moves the current". Meanwhile, 
energy flux of the electromagnetic wave exists in the wave itself and does 
not use space exterior towards the wave.

Solution of Maxwell’s equations should model a structure of the 
electromagnetic wave with electromagnetic flux energy presenting in it.

The intuition Feynman speaks of has been well founded. The 
author proves it further while restricted himself to Maxwell’s equations.

3. Requirements for Consistent Solution of 
Maxwell’s Equations 
Thus, the solution of Maxwell’s equations must:

 describe wave in vacuum and wave in wire;  
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 comply with the energy conservation law in each moment of time, 
i.e. set constant density of electromagnetic energy flux;  

 reveal phase shifting between electrical and magnetic intensities; 
 explain existence of energy flux along the wire that is equal to 

power consumed.   
What follows is an appropriate derivation of Maxwell’s equations.   

4. Variants of Maxwell’s Equations
Further, we separate different special cases (alternatives) of 

Maxwell’s equations system numbered for convenience of presentation.

Variant 1.
Maxwell's equations in the general case in the GHS system are of 

the form [3]:

  0rot 




t
H

c
E  , (1)

  04rot 



 I
ct

E
c

H  , (2)

  0div E , (3)
  0div H , (4)
EI  , (5)

where 
EHI ,,  - сonduction current, magnetic and electric intensitions 

respectively,
 ,,  - dielectric constant, magnetic permeability, conductivity 

wire material.

Variant 2.
For the vacuum must be taken 0,1,1   . When the 

system of equations (1-5) takes the form:

  01rot 




t
H

c
E , (6)

  01rot 




t
E

c
H , (7)

  0div E , (8)
  0div H . (9)

The solution to this system is offered in the Chapter 1. 
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Variant 3.
Consider the case 1 in the complex presentation:

  0rot  H
c

iE  , (10)

     0)(imagreal4rot  IiI
c

E
c

iH  , (11)

  0div E , (12)

  0div H , (13)

   EI absreal  . (14)
It should be noted that instead of showing the whole current, (14) 

shows only its real component, i.e. conductivity current. Imaginary 
component formed by a displacement current does not depend on 
electrical charges.

The solution to this system is offered in the Chapter 4. 

Variant 4.
For the wire with sinusoidal current I flowing out of an external 

source,  Ireal  may at times be excluded from equations (11-14). It is 
possible for a low-resistance wire and for a dielectric wire (for more 
details, refer to Chapter 2). As this takes place, the system (11-14) takes 
the form of

  0rot 




t
H

c
E  , (15)

  04rot 



 I
ct

E
c

H  , (16)

  0div E , (17)

  0div H . (18)
It is significant that current I is not a conductivity current even 

when it flows along the conductor. 
The solution for this system will be considered in the Chapter 2.

Variant 5.
For a constant current wire, system in alternative 1 simplifies due 

to lack of time derivative and takes the form of:
  0rot E , (21)

  04rot  I
c

H  , (22)

  0div E , (24)

  0div H , (25)
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EI  (26)
or

Variant 6.
  0rot I , (27)

  04rot  I
c

H  , (28)

  0div I , (29)

  0div H . (30)
The solution for this system will be considered in the Chapter 3.

We will be searching a monochromatic solution of the systems 
mentioned. A transition to polychromatic solution can be accomplished 
via Fourier transformation.

We will employ cylindrical system of coordinates zr ,,   - see 
Appendix 1. Obviously, if solution exists in the cylindrical system of 
coordinates, it exists in any other system of coordinates, too. 

Apppendix 1. Cylindrical Coordinates 
As it is known to [4], in cylindrical coordinates scalar divergence of 

H vector, vector gradient of scalar function  zyxа ,, , vector rotor of H 
vector, accordingly, take the form of

  




















z
HH

rr
H

r
HH zrr


1div , (a)

      ,grad,1grad,grad
z
aaa

r
a

r
aa zr 












 (b)

  ,1rot 
















z
HH

r
H z

r



(c)

  ,rot 















r
H

z
HH zr

 (d)

  .1rot 

















 r

z
H

rr
H

r
H

H (e)
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Apppendix 2. Spherical Coordinates
Fig. 1 shows a system of spherical coordinates  ,, , and Table 1 

contains expressions for rotor and divergence of vector E in these 
coordinates [4].

Fig. 1.
Table 1.

1 2 3
1  Erot

    










sintg
EEE

2  Erot
  









 EEE
sin

3  Erot











EEE

4  Ediv
    















sintg
EEEEE
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Apppendix 3. Some Correlations Between GHS and 
SI Systems 
Further, formulas appear in GHS system, yet, for illustration, some 

examples are shown in SI system. This is why, for reader’s convenience, 
Table 1 contains correlations between some measurement units of these 
systems.

Table 1.
Name GHS SI

electric current 1 GHS 3,33·10-10 A
voltage 1 GHS 3·102 V
power, energy flux density 1 GHS 10-7 Wt
energy flux density per unit 
length of wire

1 GHS 10-5 Wt/m

electric current density 1 GHS 3.33·10-6 A/m2

3.33·10-12 A/mm2

electric field intensity 1 GHS 3·104 V/m
magnetic field intensity 1 GHS 80 A/m
magnetic induction 1 GHS 10-4T
absolute dielectric permittivity 1 GHS 8.85·10-12 F/m
absolute magnetic permeability 1 GHS 1.26·10-8 H/m
capacitance 1 GHS 1.1·10-12 F

inductance 1 GHS 10-9 H
electrical resistance 1 GHS 9·1011 Om
electrical conductivity 1 GHS 1.1·10-12 sm
specific electrical resistance 1 GHS 9·109 Om·m
specific electrical conductivity 1 GHS 1.1·10-10 sm/m
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

Chapter 1. The Second Solution of 
Maxwell's Equations for vacuum

Contents
1. Introduction
2. Solution of Maxwell's Equations
3. Intensities
4. Energy Flows
5. Impulse and momentum
6. Discussion
Appendix 1
Appendix 2

1. Introduction
In Chapter "Introduction" inconsistency of well-known solution of 

Maxwell's equations was demonstrated. A new solution Maxwell's 
equations for vacuum is proposed below [5].

2. Solution of Maxwell's Equations
First we shall consider the solution of Maxwell equation for vacuum, 
which is shown in Chapter "Introduction" as variant 1, and takes the 
following form

  01rot 




t
H

c
E ,  

  01rot 




t
E

c
H ,  

  0div E ,  
  0div H .  

In cylindrical coordinates system zr ,,   these equations look as 
follows:

01














z
EE

rr
E

r
E zrr


 , (1)

,1
r

z M
z
EE

r









 


(2)
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,Mr
E

z
E zr 








(3)

,1
z

r ME
rr

E
r
E












 (4)

01














z
HH

rr
H

r
H zrr


 , (5)

,1
r

z J
z
HH

r









 


(6)

,Jr
H

z
H zr 








(7)

,1
z

r JH
rr

H
r
H












 (8)

t
E

c
J





1

, (9)

t
H

c
M





1

. (10)

For the sake of brevity further we shall use the following notations:  
)cos( tzco   , (11)

)sin( tzsi   , (12)

where  ,,  – are certain constants. Let us present the unknown 
functions in the following form:

 corjJ rr . , (13)

sirjJ )(.   , (14)

sirjJ zz )(.  , (15)

 corhH rr . , (16)

sirhH )(.   , (17)

sirhH zz )(.  , (18)

 sireE rr . , (19)

coreE )(.   , (20)

coreE zz )(.  , (21)

 cormM rr . , (21)

sirmM )(.   , (22)

sirmM zz )(.  , (23)

where )(),(),(),( rmrerhrj - certain function of the coordinate r . 
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

By direct substitution we can verify that the functions (13-23) 
transform the equations system (1-10) with three arguments zr ,,   
into equations system with one argument r  and unknown functions

)(),(),(),( rmrerhrj .
In Appendix 1 it is shown that for such a system there exists a 

solution of the following form (in Appendix 1 see (24, 27, 18, 31, 33, 34, 
32) respectively):

0)( rhz , 0)( rez . (24)

 


 1

2
rAeer , (25)

 rerh r)( . (26)

  ),(rerhr  (27)

c  . (28)
where  ,,,,cA  – constants.

Thus we have got a monochromatic solution of the equation 
system (1-10). A transition to polychromatic solution can be achieved 
with the aid of Fourier transform.

If it exists in cylindrical coordinate system, then it exists in any 
other coordinate system. It means that we have got a common solution 
of Maxwell equations in vacuum.

3. Intensities
We consider (2.25):

15.0  
 rAeer , (1)

where (А\2) - the amplitude of the intensities. From (1) it follows that
   1222  

 rAeer . (2)

Fig. 1 shows, for example, the graphics functions (1, 2) for 
8.0,1  A . 

Fig. 2 shows the vectors of intensities originating from the point
 ,rA . Let us remind that  rerh r)(  and   )(rerhr  - see (2.28, 

2.29). The directions of vectors  rer  and )(re  are chosen as:   0rer ,

0)( re . Note that the vectors HE,  are always orthogonal. The sum 
of the modules of these vectors is determined from (2.17, 2.18, 2.20, 
2.21, 2.26, 2.27) and is equal to

           222222 corhcorhsiresireHEW rr  
or
14



Chapter 1. The Second Solution of Maxwell's Equations for vacuum

     22 rereW r  (3)

- see also (10) and Fig. 1. Thus, the density of electromagnetic wave 
energy is constant in all points of a circle of this radius.

0 2 4 6 8 10 12 14 16 18 20
-0.5

-0.45

-0.4

-0.35

-0.3

-0.25
ef

(r)

0 2 4 6 8 10 12 14 16 18 20
-0.25

-0.2

-0.15

-0.1

-0.05

A
*e

f(r
)2

Fig.1. SecondSolMax.m

A

O 

re

e
h

rh

H

E

A

O

re

e
h rh

H

E

Fig. 2. Fig. 3.

The solution exists also for changed signs of the functions (2.11, 
2.21). This case is shown on Fig 3. Fig. 2 and Fig. 3 illustrate the fact that 
there are two possible type of electromagnetic wave circular polarization. 

In order to demonstrate phase shift between the wave components 
let's consider the functions (2.11, 2.12) and (2.16-2.21). It can be seen, 
that at each point with coordinates zr ,,   intensities EH ,  are shifted 
in phase by a quarter-period.
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

Let's consider the functions (2.11, 2.12) and (2.28). Then, we can 
find

)cos( tz
c

co   , )sin( tz
c

si   . (4)

Let's consider a point moving along a cylinder of constant radius 
r , at which the value of intensity depends on time as follows:

   trhH rr cos.  (5)
Comparing this equation with (2.16) and taking (4) into account, we can 
notice that equation (7) is the same as (2.16), if at any moment of time

0 z
c
 (6)

or

z
c



 . (7)

Path of the point described by equations (4, 7, 2.28) is a helix. Thus, the 
line, along which the point moves in such a way, that its intensity varies 
in a sinusoidal manner, is determined by the equation describing a helix. 
The same conclusion can be repeated for other intensities (2.17-2.21). 
Thus, 

path of the point, which moves along a cylinder of given radius in 
such a manner, that each intensity value varies harmonically with 
time, is described by a helix.

For example, Fig. 4 shows a helix, for which
  20,3,3000,300000,1  cr .

-1
-0.5

0
0.5

1

-1
-0.5

0

0.5
1

-2000

-1500

-1000

-500

0

(TokPotok33.m)Fig. 4.

The last means that at point T , moving along this helix the vectors 
of intensities (2.16-2.21) can be written as follows:
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Chapter 1. The Second Solution of Maxwell's Equations for vacuum

   trhH rr cos.  ,  trhH  sin)(.  ,  trhH zz sin)(.  ,

   treE rr sin.  ,   treE  cos)(.  ,   treE zz cos)(.  .

It was shown above (see 2.24-2.27), that 
0)( rhz , 0)( rez , )()()( rerere rr   ,  rerh r )( ,   )(rerh rr  .

Therefore, at each point there are only vectors
   treH rr  cos.  ,  treH r  sin)(.  , 

   treE rr  sin.  ,      treE r  cos)(.  .

In this case resultant vectors  HHHr  r  and  EEEr  r  lay in 

plane ,r , and their moduli are  reH rr    and  reE rr   . Fig. 4a 

shows all these vectors. It can be seen, that when the point T  moves 
along the helix, resultant vectors rH  and rE  rotate in plane ,r . 
Their moduli are constant and equal one to the other. These vectors rH  
and rE  are always orthogonal.

Er

Hr

Ef

Hf

Erf

Hrf

T

r


t2

Fig. 4а.

So, at each point T , which moves along this helix, vectors of 
magnetic and electric intensities: 

 exist only in the plane which is perpendicular to the helix axis, 
i.e. there only two projections of these vectors exist,

 vary in a sinusoidal manner,
 are shifted in phase by a quarter-period.
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