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1. Introduction 

Over the past decade, physics-based simulation has become a key enabling technology for 

variety of applications. It has taken a front seat role in computer games, animation of virtual 

worlds and robotic simulation. New applications are still emerging and physics is becoming 

an integral part of many new technologies that might have been thought of not being 

directly related to physics. For example, physics has been recently used to explain and 

recover the motion of the subject from video (Vondrak et al., 2008). Unfortunately, despite 

the availability of various simulation packages, the level of expertise required to use 

physical simulation correctly is quite high. The goal of this chapter is thus to establish 

sufficiently strong grounds that would allow the reader to not only understand and use 

existing simulation packages properly but also to implement their own solutions if 

necessary. We choose to model world as a set of constrained rigid bodies as this is the most 

commonly used approximation to real world physics and such a model is able to deliver 

predictable high quality results in real time. To make sure bodies, affected by various forces, 

move as desired, a mechanism for controlling motion through the use of constraints is 

introduced. We then apply the approach to the problem of physics-based animation 

(control) of humanoid characters. 

We start with a review of unconstrained rigid body dynamics and introduce the basic 

concepts like body mass properties, state parameterization and equations of motion. The 

derivations will follow (Baraff et al., 1997) and (Erleben, 2002), using notation from (Baraff, 

1996). For background information, we recommend reading (Eberly, 2003; Thornton et al., 

2003; Bourg, 2002). We then move to Lagrangian constrained rigid body dynamics and show 

how constraints on body accelerations, velocities or positions can be modeled and 

incorporated into simpler unconstrained rigid body dynamics. Various kinds of constraints 

are discussed, including equality constraints (required for the implementation of “joint 

motors”), inequality constraints (used for the implementation of “joint angle limits”) and 

bounded equality constraints (used for implementation of motors capable of generating 

limited motor forces). We then reduce the problem of solving for constraint forces to the 

problem of solving linear complementarity problems. Finally, we show how this method 

can be used to enforce body non-penetration and implement a contact model, (Trinkle et al., 

1997; Kawachi et al., 1997). 
Source: Motion Control, Book edited by: Federico Casolo,  
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Lastly, we illustrate how before mentioned constraints can be used to implement composite 
articulated bodies and how these bodies can be actuated by generating appropriate motor 
torques at joints, following (Kokkevis, 2004). Various kinds of convenient joint 
parameterizations with different degrees of freedom, together with options for their 
actuation, are discussed. 
 

 

Fig. 1. Examples of constrained rigid body systems. Constraints glue bodies together at 
designated points, actuate the structures or enforce non-penetration. 

1.1 Related work 

While physical simulation is conceptually well understood, control of articulated high 

degree of freedom bodies (or characters) remains a challenging problem.  On the simulation 

side there currently exist a number of commercial and open source engines that deliver 

robust and computationaly efficient performance (e.g., Crisis, Havoc, Newton, Open 

Dynamics Engine (ODE), PhysX). Quantitative analysis of performance among some of 

these and other popular choices are discussed in (Boeing et al., 2007). However, control over 

the motion of characters within these simulators is still very limited. Those packages that do 

provide means for building user defined dynamic controllers (e.g., Euphoria by 

NaturalMotion and Dynamic Controller Toolbox (Shapiro et al., 2007)) still lack fidelity and 

ability to model stylistic variations that are important for producing realistic motions. 

In this chapter, we describe trajectory-based control (either in terms of joint angles or rigidly 

attached points) implemented in the form of constraints. This type of the control is simple, 

general, stable, and is available (or easy to implement) within any simulator environment 

that supports constraints (e.g., Crisis, ODE, Newton). That said, other control strategies have 

also been proposed and are applicable for appropriate domains and tasks. For example, 

where modeling of high fidelity trajectories is hard, one can resort to sparse set of key-poses 

with proportional derivative (PD) control (Hodgins et al., 1995); such controllers can 

produce very stable motions (e.g., human gait (Yin et al., 2007)) but often look artificial or 

robotic. Locomotion controllers with stable limit cycle behavior are popular and appealing 
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choices for various forms of cyclic gates (Laszlo et al, 1996); particularly in the robotics and 

biomechanics communities (Goswami et al., 1996).  

At least in part the challenges in control stem from the high dimensionality of the control 

space. To that end few approaches have attempted to learn low-dimensional controllers 

through optimization (Safonova et al., 2004).  Other optimization-based techniques are also 

popular, but often require initial motion (Liu et al., 2005) or existing controller (Yin et al., 

2008) for adaptation to new environmental conditions or execution speed (McCann et al.,  

2006). Furthermore, because it is unlikely that a single controller can produce complex 

motions of interest, approaches that focus on building composable controllers (Faloutsos et 

al., 2001) have also been explored. Alternatively, controllers that attempt to control high 

degree-of-freedom motions using task-based formulations, that allow decoupling and 

composing of controls required to complete a particular task (e.g., maintain balance) from 

controls required to actuate redundant degrees of freedom with respect to the task, are also 

appealing (Abe et al., 2006). In robotics such strategies are known as operational space 

control (Khatib, 1987; Nakamura et al., 1987).  

Here we discuss and describe trajectory-based control that we believe to strike a balance 
between the complexity and effectiveness in instances where desired motion trajectories are 
available or easy to obtain. Such control has been illustrated to be effective in the emerging 
applications, such as tracking of human motion from video (Vondrak et al., 2008). 

2. Rigid body dynamics 

Rigid bodies are solid structures that move in response to external forces exerted on them. 
They are characterized by mass density functions describing their volumes (“mass 
properties”), positions and orientations (“position information”) in the world space and 
their time derivatives (“velocity information”).  

2.1 Body space, mass properties, position, orientation 

Properties of rigid bodies are derived from an assumption that rigid bodies can be modeled 
as particle systems consisting of a large (infinite) number of particles constrained to remain 
at the same relative positions in the body spaces. Internal spatial interaction forces prevent 
bodies from changing their shapes and so as a result, any rigid body can only translate or 
rotate with respect to a fixed world frame of reference. This allows one to associate local 
coordinate frames with the bodies and define their shapes/volumes in terms of local body 
spaces that map to the world reference frame using rigid transformations. 
We describe a volume of a rigid body by a mass density function 貢: 三戴 介 三袋 that determines 

the body’s mass distribution over points 堅王長 in the body space. The density function is non-
zero for points forming the body’s shape and zero elsewhere and its moments characterize 
the body’s response to the exerted forces. We are namely interested in total mass 兼 噺完 貢岫堅王長岻 d堅王長, center of mass  堅王頂陳長 噺 完 追王弐諦岫追王弐岻暢  d堅王長, principal moments of inertia 荊掴掴 噺 完 岾盤堅王槻長匪態 髪岫堅王佃長岻態匪貢岫堅王長岻 d堅王長, 荊槻槻 噺 完 岫岫堅王掴長岻態 髪 岫堅王佃長岻態岻貢岫堅王長岻 d堅王長, 荊佃佃 噺 完 岾岫堅王掴長岻態 髪 盤堅王槻長匪態峇 貢岫堅王長岻 d堅王長 and 

products of inertia 荊掴槻 噺 完 盤堅王掴長堅王槻長匪貢岫堅王長岻 d堅王長, 荊掴佃 噺 完 岫堅王掴長堅王佃長岻貢岫堅王長岻 d堅王長, 荊槻佃 噺 完 盤堅王槻長堅王佃長匪貢岫堅王長岻 d堅王長 

that we record into inertia matrix 
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荊長墜鳥槻 噺 嵜 荊掴掴 伐荊掴槻 伐荊掴佃伐荊掴槻 荊槻槻 伐荊槻佃伐荊掴佃 伐荊槻佃 荊佃佃 崟. 
To place a rigid body’s volume in the world, we need to know the mapping from the body 

space to the world space. For that, we assume that the body’s center of mass lies at the origin of 

the body space, 堅王頂陳長 噺 ど屎王, and construct a mapping 岷 迎, 捲王峅 so that a point 喧王長 in the body space 

will get mapped to the world space point 喧王 by applying a rotation 迎, represented by a ぬ 抜 ぬ 

rotation matrix mapping body space axes to the world space axes (orientation of the body in 

the world space), followed by applying a translation 捲王 that corresponds to the world space 

position of the body’s center of mass (position of the body in the world space), 喧王 噺 迎 糾 喧王長 髪  捲王. 

2.2 Velocity 

Having placed the body in the world coordinate frame, we would like to characterize the 
motion of this body over time. To do so we need to compute time derivatives of the position 

and orientation of the body, i.e.  
擢擢痛 岷 迎, 捲王峅. We decompose instantaneous motion over 

infinitesimally short time periods to the translational (linear) motion of the body’s center of 
mass and a rotational (angular) motion of the body’s volume. We first define linear velocity 懸王 噺 捲王岌  as the time derivative of the rigid body’s position 捲王, characterizing the instantaneous 
linear motion and describing the direction and speed of the body translation. Next, we 
describe the rotational motion as a rotation about a time varying axis that passes through 
the center of mass.  We define angular velocity 降屎屎王 as a world-space vector whose direction 
describes the instantaneous rotation axis and whose magnitude [堅欠穴 糾 嫌貸怠] defines the 
instantaneous rotation speed. Linear and angular velocities are related such that they can 
describe velocities of arbitrary points or vectors attached to the body. For example, if 堅王 噺  喧王 伐 捲王 is a vector between the point on the body, 喧王, the center of mass of the body, 捲王, 

then 堅王岌  噺  降屎屎王 抜 堅王 and 喧王岌 噺 懸王 髪 降屎屎王 抜 堅王. This can be used to derive a formula for 迎岌  that says 迎岌 噺 降屎屎王茅 糾 迎, where 降屎屎王茅 is a “cross-product matrix” such that 降屎屎王茅 糾 堅王 噺  降屎屎王 抜 堅王. It is worth noting 
that because 喧王 is fixed in the body centric coordinate frame, so is the vector 堅王. 

 
Fig. 2. Illustration of the two constrained bodies in motion. 

繋王岫喧王岻 

酵王 岾喧王, 繋王岫喧王岻峇 

Body B 

喧王喋 

喧王
X 

Z 

Y 岷 迎凋, 捲王凋峅 

Body A 

系王椎岫圏王凋, 圏王喋岻 柑噺 喧王喋 伐 喧王凋 噺 ど屎王 樺 三戴 

喧王凋 

Ball-and-Socket Joint: 

捲王凋
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2.3 Force 

From previous section we have 
擢擢痛 岷 迎, 捲王峅 噺 岷降屎屎王茅 糾 迎, 懸王峅 relating changes of the position and 

orientation to the values of the body’s linear and angular velocities. Now, we would like to 
characterize how the linear and angular velocities of a rigid body change in response to 
forces exerted on the body. Intuitively, these changes should depend on the location where 
the force is applied as well as mass distribution over the body volume. So we need to know 
not only the directions and magnitudes of the exerted forces, but also the points at which 
these forces are applied.  

To capture the effects for a single force 繋王岫喧王岻 acting at a world space point 喧王, we define a 

force-torque pair 峙繋王岫喧王岻, 酵王 岾喧王, 繋王岫喧王岻峇 峩, where 酵王 岾喧王, 繋王岫喧王岻峇 噺 岫喧王 伐 捲王岻 抜 繋王岫喧王岻 is the torque due to 

the force 繋王岫喧王岻. The torque can be imagined as a scale of the angular velocity 降屎屎王 that the rigid 

body would gain if 繋王岫喧王岻 was the only force acting on the body and the force was exerted at 喧王. To capture the overall effects of all force-torque pairs 範繋王沈 , 酵王沈飯 due to all forces acting on the 
body, it is sufficient to maintain only the corresponding aggregate statistics: total force 繋王担誰担叩狸 噺  ∑ F屎王辿辿  and total torque 酵王痛墜痛銚鎮 噺 ∑ 酵王沈沈  about the center of mass of the body, 捲王 . 
Now, we express the body’s linear and angular velocities in the form of linear and angular 
momentums whose instantaneous changes can be directly related to the values of the total 
forces and torques acting on the body. The reason for doing so is that it is actually the 
momentums that remain unchanged when no forces act on the body, not the velocities. We 

define linear momentum 鶏屎王 噺 兼 糾 懸王 and angular momentum 詣屎王 噺 荊 糾 降屎屎王 where 荊 噺 迎 糾 荊長墜鳥槻 糾 迎脹. 

The relation between the velocity and force information is then given by derivatives of 

linear and angular momentum with respect to time, 鶏屎王岌 噺 繋王痛墜痛銚鎮 and 詣屎王岌 噺 酵王痛墜痛銚鎮. 
2.4 Equations of motion 

We are now ready to present complete equations describing motion of a set of rigid bodies 
in Newtonian dynamics under the effect of forces. The equations are first order ordinary 
differential equations  (ODEs). To simulate the system, one has to numerically integrate the 
equations of motion, which can be done by using standard numerical ODE solvers. We 
explore several formulations of the equations of motion below. 

2.4.1 Momentum form 

We start with the momentum form that makes the linear and angular momentum a part of a 
rigid body’s state and builds directly upon the concepts presented in earlier sections. To 
make the body’s state complete, only the position and orientation information has to be 

added to the state. Therefore, the state is described by a vector 検王, 検王 噺 盤捲王, 迎, 鶏屎王, 詣屎王匪, where 捲王 is 

the position of the body’s center of mass, 迎 is the orientation of the body and 鶏屎王 and 詣屎王 are the 
body’s linear and angular momentums. The equation of motion for the rigid body in the 

momentum form is then given by 
擢槻屎王擢痛 噺 岫懸王, 降屎屎王茅 糾 迎, 繋王痛墜痛銚鎮 , 酵王痛墜痛銚鎮岻, where 繋王痛墜痛銚鎮 and 酵王痛墜痛銚鎮 are the 

total external force and torque exerted on the body and 懸王 and 降屎屎王 are auxiliary quantities 

derived from the state vector 検王, 懸王 噺 兼貸怠 糾 鶏屎王, 荊 噺 迎 糾 荊長墜鳥槻 糾 迎脹 , 荊貸怠 噺 迎 糾 荊長墜鳥槻貸怠 糾 迎脹 , 降屎屎王 噺 荊貸怠 糾 詣屎王. 

If there are 券 rigid bodies in the system, the individual ODE equations are combined into a 
single ODE by concatenating the body states 検王怠, 橋 , 検王津 into a single state vector 検王 噺岫検王怠, 橋 , 検王津岻 and letting 

擢槻屎王擢痛 噺 岾擢槻屎王迭擢痛 , 橋 , 擢槻屎王韮擢痛 峇. 
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2.4.2 Velocity form 

As a conceptually more common alternative, the equations of motion can be reformulated so 
that linear and angular momentums in the state vector are replaced with linear and angular 
velocities. In this formulation, the state vector 検王 is defined as  

 検王 噺 岫捲王, 迎, 懸王, 降屎屎王岻  (1) 

To formulate the right-hand-side vector of the ODE, we need know time derivatives of the 
linear and angular velocities and relate them to external forces and torques. We define linear 

acceleration 欠王 of a rigid body as the acceleration of the body’s center of mass, that is, 欠王 噺 懸王岌 噺捲王岑 , and because 鶏屎王岌 噺 繋王痛墜痛銚鎮 we immediately get 欠王 噺 兼貸怠 糾 繋王痛墜痛銚鎮. For the angular motion, we 

define angular acceleration 糠王 as the time derivative of the body’s angular velocity, 糠王 噺  降屎屎王岌 , and 
it can be shown that 糠王 噺 荊貸怠 糾 岫酵王頂墜追沈墜鎮沈鎚 髪 酵王痛墜痛銚鎮岻, where 酵王頂墜追沈墜鎮沈鎚 噺 岫荊 抜 降屎屎王岻 抜 降屎屎王 is an implicit 
internal inertial (coriolis) torque due to body rotation and 酵王痛墜痛銚鎮 is the total external torque 
applied on the body. This way we get the equation of motion for a single1 rigid body in the 
velocity form 

 
擢槻屎王擢痛 噺 岾懸王, 降屎屎王茅 糾 迎, 兼貸怠 糾 繋王痛墜痛銚鎮 , 荊貸怠 糾 盤岫荊 抜 降屎屎王岻 抜 降屎屎王 髪 酵王痛墜痛銚鎮匪峇 (2) 

2.4.3 Generalized form 

We now elaborate on the velocity-form of the equation of motion, define the notion of 
generalized velocities and forces and the concept of mass matrices for rigid bodies, which will 
allow us to treat rigid bodies as a kind of particles moving in 三滞, simplifying many 
equations. We will call any block vector consisting of a block due to a linear quantity and a 
block due to the corresponding angular quantity a generalized quantity. That way, we obtain 
generalized velocity 懸王直勅津 噺 岫懸王, 降屎屎王岻, generalized acceleration 欠王直勅津 噺 岫欠王, 糠王), generalized total external 

force 繋王直勅津痛墜痛銚鎮 噺 盤繋王痛墜痛銚鎮 , 酵王痛墜痛銚鎮匪 and generalized coriolis force  繋王直勅津 頂墜追沈墜鎮沈鎚 噺 岫ど屎王, 酵王頂墜追沈墜鎮沈鎚岻. In addition, 

we define generalized position 圏王 噺 岫捲王, 迎屎王岻 that encodes both position of the body’s center of 
mass and orientation in ぬ経 space. 
We now define the mass matrix M of a rigid body which is a は 抜 は time-dependent matrix 
consisting of four ぬ 抜 ぬ blocks encoding the body’s mass properties, 

 警 噺 岾兼 糾 継 どど 荊峇,  (3) 

and 継 is a ぬ 抜 ぬ identity matrix. From the previous section, we know that 兼 糾 欠王 噺 繋王痛墜痛銚鎮 and 荊 糾 糠王 噺 酵王痛墜痛銚鎮 髪 酵王頂墜追沈墜鎮沈鎚 which can be rewritten using the mass matrix simply as 警 糾 欠王直勅津 噺繋王直勅津痛墜痛銚鎮 髪 繋王直勅津 頂墜追沈墜鎮沈鎚. Let’s assume that the generalized coriolis force 繋王直勅津 頂墜追沈墜鎮沈鎚 is implicitly 

incorporated into to the total generalized external force 繋王直勅津痛墜痛銚鎮 and, to improve readability, 

let’s remove the 直勅津 subscripts and omit the “generalized” adjective whenever it is clear 

that the generalized notation is used. This lets us write  

 警 糾 欠王 噺  繋王痛墜痛銚鎮  (4) 

                                                                 
1 As for the momentum form, equation of motion for a set of 券 bodies is obtained by 
“cloning” the equation for a single body n-times. 
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which yields a relation between the total force 繋王痛墜痛銚鎮  and the total acceleration 欠王. Because the 

relation is linear, this equation also holds for any force 繋王 acting on the body and the 

corresponding acceleration 欠王 噺 警貸怠 糾 繋王 the body would gain in response to the application of 繋王2. 
The relation resembles Newton’s Second Law for particles and rigid bodies can thus be 
imagined as special particles with time-varying masses 警 that move in 三滞. 
3. Constraints 

One of the challenges one has to face in physical simulation is how to generate appropriate 
forces so that rigid bodies would move as desired. Instead of trying to generate these forces 
directly, we describe desired motion in terms of motion constraints on accelerations, velocities 
or positions of rigid bodies and then use constraint solver to solve for the forces. We still use 
the same equations of motion (and numerical solvers) to drive our bodies like before, but 
this time, we introduce constraint forces that implicitly act on constrained bodies so that 
given motion constraints are enforced. We study the approach of Lagrange multiplier method 
that handles each constraint in the same uniform way and allows to combine constraints 
automatically. Examples of constrained rigid bodies are given in Fig. 1. 
In general, the motion constraint on the position or orientation of a body will subsequently 
result in the constraints on its velocity and acceleration (to ensure that there is no velocity or 
acceleration in the constrained direction, leading to violation of constraint after integration 
of the equations of motion); similarly a constraint on velocity will impose a constraint on the 
acceletation. We will discuss these implications in the following section. A first-order rigid 
body dynamics with impulsive formulation of forces (discussed in Section 3.3.1) allows one 
to ignore the acceleration constraints in favor of simplicity, but at expense of inability to 
support higher-order integration schemes.  

3.1 Example: point-to-point equality constraint 

Let’s start with a motivational example. Imagine we are given two bodies and we want to 
enforce a position constraint that stipulates that point 喧王怠 噺 捲王怠 髪 堅王怠attached to the first body 
is to coincide with a point 喧王態 噺  捲王態 髪 堅王態 attached to the second body (see Fig. 2 where the 
two bodies are denoted as A and B), making the two bodies connected at 喧王怠 噺 喧王態 and 
preventing them from tearing apart. We can express this position-level constraint as a vector 

equation 系王椎岫圏王怠, 圏王態岻 柑噺 喧王態 伐 喧王怠 噺 ど屎王 樺 三戴, defined in terms of generalized positions 圏王怠, 圏王態 of 

the two bodies, such that all valid position pairs, for which the constraint is maintained, 

correspond to a manifold 系王椎岫圏王怠, 圏王態岻 噺 ど屎王. Granted the constraint is maintained already, the 

goal is to compute an appropriate constraint force so that 岫圏王怠, 圏王態岻 stays on the manifold 

during the state update. Given the total external forces 繋王怠痛墜痛銚鎮and 繋王態痛墜痛銚鎮 acting on the two 
bodies, we will construct a constraint force such that it would cancel exactly those 

components of the 繋王怠痛墜痛銚鎮 and 繋王態痛墜痛銚鎮 vectors that would make the bodies accelerate away 
from the manifold. To do this, we will reformulate our position-level constraint to a 
constraint on body accelerations and from that derive the constraint force. Our constraint 
formulation will give us a set of basis vectors that need be combined to get the constraint 

                                                                 
2 If 繋王 refers to the total external force exerted on the body, coriolis force is assumed to be 

included in 繋王. 
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force. Appropriate coefficients of this combination are computed by solving a system of 
linear equations. 
Let’s assume that at the current time instant the bodies are positioned so that the constraint 

is maintained, that is, 系王椎 噺 ど屎王. To make sure the constraint will also be maintained in the 

future, we have to enforce 系王岌椎 噺 ど屎王. Let’s have a look at what 系王岌椎 looks like, 系王椎岌 噺  擢擢痛 岫喧王態 伐喧王怠岻 噺 擢擢痛 岫捲王態 髪 堅王態 伐 捲王怠 伐 堅王怠岻 噺 捲王岌態 髪 降屎屎王態 抜 堅王態 伐 捲王岌怠 伐 降屎屎王怠 抜 堅王怠 噺 捲王岌態 伐 堅王態 抜 降屎屎王態 伐 捲王岌怠 髪 堅王怠 抜 降屎屎王怠 噺捲王岌態 伐 堅王態茅 糾 降屎屎王態 伐 捲王岌怠 髪 堅王怠茅 糾 降屎屎王怠 噺 岫伐継 堅王怠茅岻 糾 懸王怠 髪 岫継 伐堅王態茅岻 糾 懸王態 噺  岫伐継 堅王怠茅     継 伐堅王態茅岻 糾 磐懸王怠懸王態卑 噺岫蛍怠 蛍態岻 糾 磐懸王怠懸王態卑, where 蛍怠 and 蛍態 are ぬ 抜 は matrices called the Jacobian matrices due to the 

position constraint 系王椎 and the first and the second body. So we need to enforce another 

constraint 系王塚岫懸王怠, 懸王態岻 柑噺 蛍怠 糾 懸王怠 髪 蛍態 糾 懸王態 噺 ど屎王, this time formulated in terms of generalized 
velocities 懸王怠, 懸王態. This is good because we were able to reformulate the original constraint 
specified in terms of generalized positions to a constraint specified in terms of generalized 
velocities. 

Let’s assume that the velocity constraint also holds, that is, 系王塚 噺 ど屎王, and let’s guarantee the 

velocity constraint will be maintained in the future by requesting 系王塚岌 噺 ど屎王 (this will also 

guarantee that the original position-level constraint will be maintained, because 系王椎 噺 ど屎王 at 

the current time instant). We have 系王塚岌 噺 擢擢痛 岫蛍怠 糾 懸王怠 髪 蛍態 糾 懸王態岻 噺 蛍怠 糾 欠王怠 髪 蛍態 糾 欠王態 髪 蛍岌怠 糾 懸王怠 髪 蛍岌態 糾 懸王態 

and so we obtain a constraint 系王銚岫欠王怠, 欠王態岻 柑噺 蛍怠 糾 欠王怠 髪 蛍態 糾 欠王態 伐 潔王 噺 ど屎王, where 蛍怠 and 蛍態 are the 

Jacobian matrices defined above, 蛍岌怠and 蛍岌態 are their time derivatives and 潔王 噺 伐蛍岌怠 糾 懸王怠 伐 蛍岌態 糾 懸王態. 
This constraint is formulated directly in terms of generalized accelerations 欠王怠, 欠王態 and because 

we already know the relation between accelerations and forces, this constrains the forces 

that can act on the two bodies. To complete the formulation of 系王銚, we need to get the value 

of 潔王. It is usually easier to compute 潔王 directly from 系王塚岌  rather than by computing the time 

derivatives of the Jacobian matrices. We can for example do, 系王椎岑 噺 系王塚岌 噺 擢擢痛 盤伐捲王岌怠 伐 降屎屎王怠 抜 堅王怠匪 髪擢擢痛 盤捲王岌態 伐 降屎屎王態 抜 堅王態匪 噺 岾伐捲王岑怠 伐 降屎屎王岌 怠 抜 堅王怠 伐 降屎屎王怠 抜 岫降屎屎王怠 抜 堅王怠岻峇 髪 岾捲王岑態 髪 降屎屎王岌 態 抜 堅王態 髪 降屎屎王態 抜 岫降屎屎王態 抜 堅王態岻峇 噺岾伐捲王岑怠 髪 堅王怠茅 糾 降屎屎王岌 怠 伐 降屎屎王怠 抜 岫降屎屎王怠 抜 堅王怠岻峇 髪 岾捲王岑態 伐 堅王態茅 糾 降屎屎王岌 態 髪 降屎屎王態 抜 岫降屎屎王態 抜 堅王態岻峇 噺 岫伐継 堅王怠茅     継 伐堅王態茅岻 糾磐欠王怠欠王態卑 伐 降屎屎王怠 抜 岫降屎屎王怠 抜 堅王怠岻 髪 降屎屎王態 抜 岫降屎屎王態 抜 堅王態岻 and obtain 潔王 噺 降屎屎王怠 抜 岫降屎屎王怠 抜 堅王怠岻 伐 降屎屎王態 抜 岫降屎屎王態 抜 堅王態岻. 
So given our original constraint 系王椎岫圏王怠, 圏王態岻 柑噺 喧王態 伐 喧王怠 噺 ど屎王 and assuming 系王椎 噺 ど屎王 and 系王椎岌 噺 ど屎王 
we were able to reduce the problem of maintaining 系王椎 噺 ど屎王 to the problem of enforcing 系王岑椎 噺 ど屎王 which is an acceleration-level constraint with 蛍怠 噺 岫伐継 堅王怠茅岻, 蛍態 噺 岫 継 伐堅王態茅岻 and 潔王 噺 降屎屎王怠 抜 岫降屎屎王怠 抜 堅王怠岻 伐 降屎屎王態 抜 岫降屎屎王態 抜 堅王態岻. We now need to compute the generalized constraint 

forces 繋王怠頂 and 繋王態頂 to be applied to the first and second body, respectively. Lagrange multiplier 
method computes these forces as a linear combination of the rows of the Jacobian matrices 

(that are known apriori), 繋王怠頂 噺 蛍怠脹 糾 膏王, 繋王態頂 噺 蛍態脹 糾 膏王, and solves for the unknown coefficients 

(multipliers) 膏王 in the combination so that 蛍怠 糾 欠王怠 髪 蛍態 糾 欠王態 噺 潔王 after the external forces 繋王怠痛墜痛銚鎮 
and 繋王態痛墜痛銚鎮 and constraint forces 繋王怠頂 and 繋王態頂 were applied to the bodies. This can be imagined 
as follows. Each row of the three rows in 蛍怠 糾 欠王怠 髪 蛍態 糾 欠王態 噺 潔王 樺 三戴 defines a hypersurface in 
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the space of points 岫欠王怠, 欠王態岻 and the 岫欠王怠, 欠王態岻 acceleration is valid if 岫欠王怠, 欠王態岻 lies on each of 
these hypersurfaces. Now, the normal of the 倹-th hypersurface equals the 倹-th row of 岫蛍怠 蛍態岻 
and so in order to project 岫欠王怠, 欠王態岻 onto the 倹-th hypersurface, the force 膏珍 糾 岫蛍怠岻珍 has to be 

applied to the first body and 膏珍 糾 岫蛍態岻珍 has to be applied to the second body. 

Let’s solve for the multipliers 膏王. For that, let’s concatenate individual vectors and matrices 
into global vectors and matrices characterizing the whole rigid body system, we get 欠王 噺 岫欠王怠, 欠王態岻, 蛍 噺 岫蛍怠 蛍態岻, 繋王痛墜痛銚鎮 噺 盤繋王怠痛墜痛銚鎮 , 繋王態痛墜痛銚鎮匪, 繋王頂 噺 蛍脹 糾  膏王 噺 盤繋王怠頂 , 繋王態頂匪, 警 噺  磐警怠 どど 警態卑 and  蛍 糾 欠王 噺  潔王. From the section on equations of motion, we get that the acceleration 欠王 of the rigid 

body system after the total external force 繋王痛墜痛銚鎮 and constraint force 繋王頂 are added to the 

system equals 欠王 噺 警貸怠 糾 盤繋王痛墜痛銚鎮 髪 繋王頂匪 噺 警貸怠 糾 盤繋王痛墜痛銚鎮 髪 蛍脹 糾 膏王匪 噺 警貸怠 糾 繋王痛墜痛銚鎮 髪  警貸怠 糾 蛍脹 糾 膏王. 

This acceleration has to satisfy the constraint 蛍 糾 欠王 噺  潔王 and so 蛍 糾 警貸怠 糾 繋王痛墜痛銚鎮 髪  蛍 糾 警貸怠 糾 蛍脹 糾膏王 噺 潔王, 岫蛍 糾 警貸怠 糾 蛍脹岻 糾 膏王 髪 盤蛍 糾 警貸怠 糾 繋王痛墜痛銚鎮 伐 潔王匪 噺 ど屎王, finally producing a system of linear 

equations 畦 糾 膏王 髪 決屎王 噺 ど屎王, where 畦 噺 蛍 糾 警貸怠 糾 蛍脹 is a ぬ 抜 ぬ matrix, 決屎王 噺 蛍 糾 警貸怠 糾 繋王痛墜痛銚鎮 伐 潔王 is a ぬ 抜 な vector and 膏王 樺 三戴 are the multipliers to be solved for. Once 膏王 are known, constraint 

force 繋王頂 噺 蛍脹 糾  膏王 噺 盤繋王怠頂 , 繋王態頂匪 is applied to the bodies. 

3.2 Acceleration constraints 

We will now generalize the approach from the previous section for 潔 constraints and 券 
bodies. The index 件 will be used to index constraints, 件 噺 な, … , 潔, and the index 倹 will be used 
to index bodies, 倹 噺 な, … , 券. Vectors 圏王 噺 岫圏王怠, … , 圏王津岻, 懸王 噺 岫懸王怠, … , 懸王津岻 and 欠王 噺 岫欠王怠, … , 欠王津岻 will 
refer to the generalized position, velocity and acceleration of the rigid body system, 繋王痛墜痛銚鎮 噺 岫繋王怠痛墜痛銚鎮 , …, 繋王津痛墜痛銚鎮) will refer to the total external force exerted on the system and 繋王頂 噺 岾盤繋王頂匪怠, … , 盤繋王頂匪津峇 will refer to the total constraint force exerted on the system  due to all 

constraints.  
Let 警珍 be the mass matrices of the individual bodies in the system. We then have 警珍 糾 欠王珍 噺繋王珍痛墜痛銚鎮 and so if 警 is a square block diagonal matrix with the individual matrices 警珍 on the 

diagonal, which we call the mass matrix of the rigid body system, we can relate the system 

acceleration 欠王 due to the application of 繋王痛墜痛銚鎮 by 警 糾 欠王 噺 繋王痛墜痛銚鎮 , where 

警 噺 蛮警怠 ど … どど 警態 … ど教 教 狂 教ど ど … 警津妃. 

Constraint 件 acts on two bodies 畦沈 and 稽沈, has a dimensionality 兼沈 and removes 兼沈 degrees 

of freedom (DOFs) from the system. For example, if the two bodies are connected by a 3D 

revolute joint - 兼沈 噺 ぬ, because the joint constrains position of body 畦沈 with respect to 稽沈 
such that the two are affixed at the joint location (see Fig. 2). Note that while the constraint 

removes only 3 degrees of freedom, it affects both linear and angular properties of the 

system. A hinge joint will remove additional 2 degrees of freedom, allowing only rotational 

motion about a single axis with respect to the joint, resulting in a constraint of dimension 兼沈 噺 の, etc. 

The constraint is characterized by a 兼沈 抜 は券 matrix 蛍沈  of rank 兼沈 called the constraint’s 
Jacobian matrix consisting of 券 兼沈 抜 は blocks due to individual bodies and a constraint 
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equation right-hand-side vector 潔王沈 of length 兼沈. 蛍沈 has only two non-zero blocks, one due to 
the first constrained body 畦沈 and one due to the second constrained body 稽沈, referred to by 蛍沈,凋日 and 蛍沈,喋日 . According to the Lagrange multiplier approach, the constraint is enforced by 

applying a constraint force 繋王頂沈 噺 蛍沈脹 糾 膏王沈 噺 岾盤繋王頂沈匪怠, … , 盤繋王頂沈匪津峇 to the rigid body system, 

determined by the values of 兼沈 multipliers 膏王沈. Each row 倦 噺 な, … , 兼沈  of 蛍沈 removes one DOF 

from the system and contributes to the constraint force 繋王頂沈 by exerting a force 盤膏王沈匪賃 糾 岫蛍沈岻賃 on 

the system. Due to the way 蛍沈 is defined, 盤繋王頂沈匪凋日 噺 蛍沈,凋日脹  糾 膏王沈 and 盤繋王頂沈匪喋日 噺 蛍沈,喋日脹  糾 膏王沈 are the only 

non-zero blocks of 繋王頂沈 and 盤繋王頂沈匪凋日 is the constraint force applied to the first body and 盤繋王頂沈匪喋日  is 

the constraint force applied to the second body. 
Let’s stack the individual 兼沈 抜 は券 Jacobian matrices 蛍沈 by rows to a single 兼 抜 は券 Jacobian 

matrix 蛍, where 兼 噺  ∑ 兼沈沈  is the total number of DOFs removed from the system. 蛍 is then a 

block matrix with 潔 抜 券 blocks whose non-zero blocks are given by 蛍沈,凋日 and 蛍沈,喋日 . Then the 

total constraint force 繋王頂 exerted on the system equals 繋王頂 噺 ∑ 繋王頂沈沈 噺 蛍脹 糾 膏王, where 膏王 噺 岫膏王怠, … , 膏王頂岻 

is a 兼 抜 な vector of Lagrange multipliers due to all constraints. Because constraints should 

not be conflicting, 蛍 is assumed to have full rank. 

Let 畦 噺 蛍 糾 警貸怠 糾 蛍脹 , 潔王 噺 岫潔王怠, … , 潔王頂岻 and 決屎王 噺 蛍 糾 警貸怠 糾 繋王痛墜痛銚鎮 伐 潔王. Matrix 畦 is a 兼 抜 兼 matrix and 

can be treated as if it consisted of 潔 抜 潔 blocks due to individual constraint pairs such that 

the value of the 岫件怠, 件態岻-th block of size 兼沈迭 抜 兼沈鉄 due to the 件怠-th constraint and the 件態-th 

constraint is given by 畦沈迭,沈鉄 噺 ∑ 蛍沈迭,珍 糾 警珍貸怠珍 糾 盤蛍沈鉄,珍匪脹
. Because the individual matrices 警珍 and 警珍貸怠 are positive definite, 警 and 警貸怠 are positive definite and so because 蛍 is assumed to 

have full rank, 畦 is also positive definite. We will use 畦沈 (with slight abuse of notation) to 

denote the 件-th block row of 畦 due to constraint 件. Vector 決屎王 is a vector of length 兼 consisting 

of 潔 blocks due to the individual constraints. We use 決屎王沈 to refer to the 件-th block of 決屎王 of 

length 兼沈 due to constraint 件. 
We will now discuss specific types of constraints. Each constraint 件 will generate a constraint 

force of the same form 繋王頂沈 噺 蛍沈脹 糾 膏王沈 but different constraint types will lead to different 

conditions on the legal values of the multipliers 膏王, essentially constraining the directions the 

constraint force can act along (can it push, can it pull or can it do both?). 

3.2.1 Equality constraints 

We define acceleration level equality constraint 件 as follows. The constraint acts on two bodies 畦沈 and 稽沈, has a dimensionality 兼沈 and is specified by two 兼沈 抜 は matrices 蛍沈,凋日 and 蛍沈,喋日  and a 

right-hand-side vector 潔王沈 of length 兼沈. The constraint requests that 蛍沈,凋日 糾 欠王凋日 髪 蛍沈,喋日 糾 欠王喋日 噺 潔王沈 
for accelerations 欠王凋日 and 欠王喋日 .  
The 蛍沈,凋日 and 蛍沈,喋日  matrices are called the Jacobian blocks due to the first and the second body 

and are supposed to have full rank. This terminology stems from the fact that if the 

acceleration-level constraint implements a position-level constraint 系王椎盤圏王凋日 , 圏王喋日匪 噺 ど屎王 or a 

velocity-level constraint 系王塚盤懸王凋日 , 懸王喋日匪 噺 ど屎王 then 蛍沈,凋日 噺 擢寵王妊擢槌屎王豚日 and 蛍沈,喋日 噺 擢寵王妊擢槌屎王遁日 or 蛍沈,凋日 噺 擢寵王寧擢塚屎王豚日 and 蛍沈,喋日 噺 擢寵王寧擢塚屎王遁日. The constraint is an equality constraint because it is described by a linear 

equality. 
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Let’s derive conditions on 膏王 due to the acceleration level equality constraint 件. Using our 
rigid body system dynamics equation, we get that the system acceleration 欠王 after the total 

external force 繋王痛墜痛銚鎮  and total constraint force 繋王頂 噺 蛍脹 糾 膏王 are applied to the system equals 欠王 噺 警貸怠 糾 岫繋王痛墜痛銚鎮 髪 蛍脹 糾 膏王岻. The constraint equation requests that 蛍沈 糾 欠王 伐 潔王沈 噺 ど屎王 which means 

that  蛍沈 糾 欠王 伐 潔王沈 噺 岫 蛍 糾 欠王 伐 潔王岻沈 噺 盤蛍 糾 警貸怠 糾 繋王痛墜痛銚鎮 髪 蛍 糾 警貸怠 糾 蛍脹 糾 膏王 伐 潔王匪沈 噺 岾岫蛍 糾 警貸怠 糾 蛍脹岻 糾 膏王 髪盤蛍 糾 警貸怠 糾 繋王痛墜痛銚鎮 伐 潔王匪峇沈 噺 盤畦 糾 膏王 髪 決屎王匪沈 噺 畦沈 糾 膏王 髪 決屎王沈 噺  ど屎王. Hence we get that equality constraint 件 
requires that  

 畦沈 糾 膏王 髪 決屎王沈 噺 ど屎王  (5) 

which is an equality constraint on the values of 膏王. 
3.2.2 Inequality constraints 

Let’s think of enforcing a different kind of constraint such that the equality sign 噺 in the 

constraint’s formulation is replaced with either a greater-than-or-equal sign 半 or a less-than-

or-equal sign 判. For example, if 系椎岫圏王怠, 圏王態岻 measures a distance of a ball from the ground 

plane, we might want to enforce a one-dimensional position constraint 系椎岫圏王怠, 圏王態岻 半 ど 

requesting that the ball lies above the ground. Assuming that both 系椎岫圏王怠, 圏王態岻 噺 ど and 系椎岌 岫圏王怠, 圏王態岻 噺 ど (the ball rests on the ground), the constraint can be implemented by 

maintaining 系岑椎岫圏王怠, 圏王態岻 半 ど, which is an acceleration-level greater-or-equal constraint. 

3.2.2.1 Greater-or-equal constraints 

We define acceleration level greater-or-equal constraint 件 as follows. The constraint acts on two 

bodies 畦沈 and 稽沈, has a dimensionality 兼沈 and is specified by two 兼沈 抜 は matrices 蛍沈,凋日 and 蛍沈,喋日  and a right-hand-side vector 潔王沈 of length 兼沈. The constraint requests that 蛍沈,凋日 糾 欠王凋日 髪 蛍沈,喋日 糾欠王喋日 半 潔王沈 for accelerations 欠王凋日 and 欠王喋日 . 
Let’s present conditions on 膏王 due to the acceleration level greater-or-equal constraint 件. 
Similarly to the equality case, 蛍沈,凋日 糾 欠王凋日 髪 蛍沈,喋日 糾 欠王喋日 半 潔王沈 can be rewritten as (1) 蛍沈,凋日 糾 欠王凋日 髪 蛍沈,喋日 糾欠王喋日 伐 潔王沈 噺 蛍沈 糾 欠王 伐 潔王沈 噺 畦沈 糾 膏王 髪 決屎王沈 半 ど屎王, which is an inequality greater-or-equal constraint on 

the values of 膏王. Now, let’s recall that in Lagrange multiplier approach, the goal of 繋王頂沈 is to cancel 

those components of 繋王痛墜痛銚鎮 that would make the bodies accelerate towards invalid states. In 
the case of an equality constraint, the bodies were restricted to remain on the intersections of 

the hypersurfaces due to the constraint’s DOFs and 繋王頂沈 cancelled accelerations along the 
directions of the hypersurface normals. In the case of a greater-or-equal constraint, however, 
the bodies can move away from a hypersurface along the direction of the hypersurface’s 
normal, but not in the opposite direction. In other words, positive accelerations along the 

positive directions of the normals are unconstrained and therefore (2) 膏王沈 半 ど屎王 (the constraint 
force can not pull the bodies back to the hypersurface). In addition, (3) if the bodies are 

already accelerating to the front of the hypersurface 倦, 盤蛍沈,凋日 糾 欠王凋日 髪 蛍沈,喋日 糾 欠王喋日 伐 潔王沈匪賃 伴 ど, then 

the constraint force due to that hypersurface must vanish, that is 盤膏王沈匪賃 噺 ど, so that no energy 

would be added to the system (constraint force is as “lazy” as possible). These conditions 

can be restated in terms of the 件-th block row of matrix 畦 and the 件-th block of vector 決屎王 as 
follows, 
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Motion Control 12 畦沈 糾 膏王 髪 決屎王沈 半 ど屎王 膏王沈 半 ど屎王 盤畦沈 糾 膏王 髪 決屎王沈匪 糾  膏王沈 噺 ど, (6) 

where 盤畦沈 糾 膏王 髪 決屎王沈匪 糾  膏王沈 噺 ∑ 盤畦沈 糾 膏王 髪 決屎王沈匪陳日賃退怠 賃 糾 盤膏王沈匪賃 噺 ど in fact means that 盤畦沈 糾 膏王 髪 決屎王沈匪賃 糾 盤膏王沈匪賃 

for な 判 倦 判 兼沈 because both the products have to be positive. It is said that the components 

of 畦沈 糾 膏王 髪 決屎王沈 are complementary to the corresponding components of 膏王沈. 
3.2.2.2 Less-or-equal constraints 

We define acceleration level less-or-equal constraint 件 as follows. The constraint acts on two 
bodies 畦沈 and 稽沈, has a dimensionality 兼沈 and is specified by two 兼沈 抜 は matrices 蛍沈,凋日 and 蛍沈,喋日  and a right-hand-side vector 潔王沈 of length 兼沈. The constraint requests that 蛍沈,凋日 糾 欠王凋日 髪 蛍沈,喋日 糾欠王喋日 判 潔王沈 for accelerations 欠王凋日 and 欠王喋日 . 
Analogously to the previous case, we obtain the following set of conditions on multipliers 膏王 
due to the acceleration level less-or-equal constraint 件. In addition to the condition 蛍沈 糾 欠王 伐潔王沈 噺 畦沈 糾 膏王 髪  決屎王沈 判 ど屎王, multipliers due to constraint 件 have to be negative and complementary 

to 膏王沈, 畦沈 糾 膏王 髪 決屎王沈 判 ど屎王 膏王沈 判 ど屎王 盤畦沈 糾 膏王 髪 決屎王沈匪 糾  膏王沈 噺 ど. (7) 

Less-or-equal constraints 件 can trivially be converted to greater-or-equal constraints by 

negating the Jacobian blocks and the right-hand-side vector 潔王沈 and so they do not have to be 

handled as a special case. 

3.2.3 Bounded equality constraints 

Let’s suppose we want to implement a one-dimensional constraint that would behave like 

an equality constraint 蛍沈 糾 欠王 噺 潔王沈 such that the constraint would break if the magnitude 舗 蛍沈脹舗 糾 嵳盤膏王沈匪怠嵳 of the constraint force 繋王頂沈 噺 蛍沈脹 糾 膏王沈 required to maintain the constraint exceeds a 

certain limit. Such a capability could, for example, be used for the implementation of various 

kinds of motors with limited power. Now, because 舗 蛍沈脹舗 is known, limiting the force 

magnitude (in this case) is equivalent to specifying the lower and upper bound on the value 

of the multiplier 盤膏王沈匪怠 . Hence, without loss of generality we can assume the bounds on 膏王沈 
are given instead. In the general case of a multi-dimensional constraint, we assume that each 

multiplier has its own bounds, independent of the values of other multipliers, so that the 

problem of solving for 膏王 remains tractable. 

We define acceleration level bounded equality constraint 件 as follows. The constraint acts on two 

bodies 畦沈 and 稽沈, has a dimensionality 兼沈 and is specified by two 兼沈 抜 は matrices 蛍沈,凋日 and 蛍沈,喋日 , a right-hand-side vector 潔王沈 of length 兼沈 and 膏王沈 bounds 膏王沈鎮墜 判 ど屎王 and 膏王沈朕沈 半 ど屎王. The 

constraint requests that 盤膏王沈鎮墜匪賃 判 盤膏王沈匪賃 判 盤膏王沈朕沈匪賃 and implements the equality constraint 蛍沈,凋日 糾 欠王凋日 髪 蛍沈,喋日 糾 欠王喋日 噺 潔王沈 for accelerations 欠王凋日 and 欠王喋日  subject to constraint force limits given 

by 膏王沈鎮墜 and 膏王沈朕沈 . 
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We will now elaborate on what constraint force limits due to the acceleration level bounded 

equality constraint 件 really mean and what the corresponding conditions on 膏王 look like. 

Following up on the hypersurface interpretation of the equality constraint 蛍沈 糾 欠王 伐 潔王沈 噺 ど屎王, if 
the bodies are to move off the hypersurface 倦 due to the 倦-th constraint DOF in the direction 

of the surface normal, a negative 盤膏王沈匪賃 is required to cancel the acceleration. Now, if the 

value of 盤膏王沈匪賃 required to fully cancel the acceleration is less than the allowed lower limit 盤膏王沈鎮墜匪賃, clamped 盤膏王沈匪賃 半 盤膏王沈鎮墜匪賃 would not yield a constraint force strong enough to cancel 

the prohibited acceleration and in the end 蛍沈 糾 欠王 伐 潔王沈 伴 ど屎王. Similarly, if the bodies are to move 

off the hypersurface in the opposite direction, a positive 盤膏王沈匪賃 is required to cancel the 

acceleration. If 盤膏王沈匪賃 is clamped such that 盤膏王沈匪賃 判 盤膏王沈朕沈匪賃 and the acceleration is not cancelled 

fully then  蛍沈 糾 欠王 伐 潔王沈 隼 ど屎王. Putting this discussion into equations and assuming 盤膏王沈鎮墜匪賃 判 ど 

and 盤膏王沈朕沈匪賃 半 ど, we get 盤膏王沈鎮墜匪賃 判 盤膏王沈匪賃 判 盤膏王沈朕沈匪賃 盤膏王沈匪賃 噺 盤膏王沈鎮墜匪賃 馨 盤畦沈 糾 膏王 髪 決屎王沈匪賃 半 ど 盤膏王沈匪賃 噺 盤膏王沈朕沈匪賃 馨 盤畦沈 糾 膏王 髪 決屎王沈匪賃 判 ど 盤膏王沈鎮墜匪賃 隼 盤膏王沈匪賃 隼 盤膏王沈鎮墜匪賃 馨 盤畦沈 糾 膏王 髪 決屎王沈匪賃 噺 ど. (8) 

 

Fig. 3. Visualization of complementarity conditions on the pairs 盤膏沈 , 拳沈岫膏王岻匪 due to different 

kinds of one dimensional constraints 件, where 拳沈盤膏王匪 柑噺 畦沈 糾 膏王 髪 決沈 噺 蛍沈 糾 欠王 伐 潔沈. Thick lines 

indicate permissible values for the 盤膏沈 , 拳沈岫膏王岻匪 pairs. As can be seen, equality constraint 

requests 拳沈岫膏王岻 to be zero and lets 膏沈 take an arbitrary value. Greater-or-equal constraint 

requests both 拳沈岫膏王岻 and 膏沈 to be non-negative and complementary to each other. Bounded 

equality constraint generalizes the two previous cases by introducing explicit limits 膏沈鎮墜 判 ど 

and 膏沈朕沈 半 ど on the values of 膏沈 . For improved readability, 屎屎屎王 accents have been removed 
from one-dimensional vectors related to the constraint 件. 

ど 
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拳沈岫膏王岻 

膏沈 

ど

拳沈岫膏王岻 

ど 膏沈 

蛍沈 糾 欠王 噺 潔沈 Equality constraint Greater-or-equal constraint 

  蛍沈 糾 欠王 半 潔沈 

ど

ど 膏沈 

拳沈岫膏王岻 

膏沈鎮墜 膏沈朕沈 

蛍沈 糾 欠王 噺 潔沈 Bounded equality constraint 
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Bounded equality constraints are generalization of both inequality and equality constraints. 

For example, if we set 膏王沈鎮墜 噺 ど屎王 and 膏王沈朕沈 噺 ∞屎屎屎王 then the bounded equality constraint 件 turns to a 
greater-or-equal constraint 件 with the same Jacobian blocks and right-hand-side vector 潔王沈. 
Similarly, by setting 膏王沈鎮墜 噺 伐∞屎屎屎王 and 膏王沈朕沈 噺 ど屎王, the constraint turns to a less-or-equal constraint. 

Finally, by setting 膏王沈鎮墜 噺 伐∞屎屎屎王 and 膏王沈朕沈 噺 ∞屎屎屎王, the constraint turns to an unbounded equality 
constraint. 

3.2.4 Reduction to LCP 

In the previous section we have discussed several constraint types and showed what 

conditions on the multipliers 膏王 they impose. Our goal is now to solve for 膏王 obeying the 

presented conditions so that the constraint force 繋王頂 噺 蛍脹 糾 膏王 could be exerted on the system. 

As it turns out, the problem of solving for 膏王 is equivalent to solving of specific kinds of linear 

complementarity problems (LCPs) for which efficient algorithms exist and so we can compute 膏王 
by using a LCP solver, (Smith, 2004; Vondrak, 2006; Cline, 2002). To simplify the discussion, 
we assume that every inequality and bounded equality constraint 件 is one-dimensional, 兼沈 噺 な. As a result, we can simply write 膏沈 instead of 盤膏王沈匪怠, etc. 

If all the constraints are unbounded equalities, the corresponding conditions on 膏王 are given 

by 畦 糾 膏王 髪 決屎王 噺 ど屎王 which is a linear system that can be solved efficiently by standard 

factorization techniques. If all constraints are greater-or-equal constraints, we get a pure 

linear complementarity problem of the form 畦 糾 膏王 髪 決屎王 半 ど屎王, 膏王 半 ど屎王, 膏王 糾 盤畦 糾 膏王 髪 決屎王匪 噺 ど屎王, which can 

be solved by a standard LCP solver. If there are 倦 unbounded equality constraints and 潔 伐 倦 

greater-or-equal constraints, we get a mixed linear complementarity problem 畦勅槌 糾 膏王 髪 決屎王勅槌 噺ど屎王, 畦沈津勅槌 糾 膏王 髪 決屎王沈津勅槌 半 ど屎王, 膏王沈津勅槌 半 ど屎王, 膏王沈津勅槌 糾 盤畦沈津勅槌 糾 膏王 髪 決屎王沈津勅槌匪 噺 ど, where 畦勅槌 , 決屎王勅槌 denotes the 

rows of 畦, 決屎王 due to equality constraints and 畦沈津勅槌, 決屎王沈津勅槌 denotes the rows of 畦, 決屎王 due to 

inequality constraints. Mixed LCPs can be solved by mixed LCP solvers. Finally, if there are 倦 unbounded equality constraints and 潔 伐 倦 bounded equality-constraints (including 

inequality constraints 件 with appropriately set 膏王沈 limits), we get a lo-hi linear complementarity 

problem 畦勅槌 糾 膏王 髪 決屎王勅槌 噺 ど屎王, 膏沈鎮墜 判 膏沈 判 膏沈朕沈 , 膏沈 噺 膏沈鎮墜 馨 畦沈 糾 膏王 髪 決沈 半 ど, 膏沈 噺 膏沈朕沈 馨 畦沈 糾 膏王 髪 決沈 判ど, 膏沈鎮墜 隼 膏沈 隼 膏沈朕沈 馨 畦沈 糾 膏王 髪 決沈 噺 ど, where 件 indexes unbounded equality and inequality 

constraints. This is the most general form that can handle all constraint forms we have 

discussed and can also be solved efficiently. 

3.3 Velocity constraints 

So far we have discussed how constraints can be implemented on the accelerations. It is 

useful, however, to specify constraints on the velocities as well. Let’s recall the example with 

the ball and the ground plane where the goal is to enforce a one-dimensional position-level 

constraint 系椎岫圏王怠, 圏王態岻 半 ど stipulating that the ball has to stay above the ground. Now, if 系椎岫圏王怠岫建岻, 圏王態岫建岻岻 噺 ど and 系椎岌 岫圏王怠岫建岻, 圏王態岫建岻岻 隼 ど at the current time 建 (the ball strikes the ground 

plane) then 系椎岫圏王怠岫建 髪 鉛岻, 圏王態岫建 髪 鉛岻岻 隼 ど at the time instant 建 髪 香 regardless of accelerations at 

time 建 for a sufficiently small 香. In order to ensure that the constraint is maintained at 建 髪 香, 

velocities at time 建 have to change so that 系椎岌 岫圏王怠岫建岻, 圏王態岫建岻岻 半 ど. This, however, is a constraint 

on the velocity. 
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3.3.1 Impulsive dynamics 

We will now outline the concept of impulsive forces and first-order rigid body dynamics. 

With regular forces, the effects of forces on positions and orientations of rigid bodies are 

determined by second-order (Newtonian) dynamics in which velocities change through the 

integration of forces while positions change through the integration of velocities. With 

impulsive forces, the effects of forces on positions and orientations are determined by first-

order (impulsive) dynamics in which velocities change directly through the application of 

impulsive forces and positions change through the integration of velocities. 

We postulate impulsive force 蛍王庁 as a force with “units of momentum”. If 鶏屎王 and 詣屎王 are the linear 

and angular momentums of a rigid body and  蛍王庁 is applied to the body at the world space 

position 堅王, then the linear momentum 鶏屎王 changes by the value Δ鶏屎王 噺 蛍王庁 and the angular 

momentum 詣屎王 changes by the value Δ詣屎王 噺 蛍王邸, where 蛍王邸 噺 岫堅王 伐 捲王岻 抜 蛍王庁 is impulsive torque due to 

the impulsive force 蛍王庁. Impulsive forces and torques can be seen as “ordinary” forces and 
torques that directly change the body’s linear and angular momentums, instead of affecting 
their time derivatives. 
Similarly to the second-order dynamics, we couple linear and corresponding  angular 

quantities to generalized quantities. That way, we obtain generalized momentum 繋王沈陳椎痛墜痛銚鎮 噺岫鶏屎王, 詣屎王岻 and generalized impulsive force (impulse) 繋王沈陳椎 噺 岫蛍王庁 , 蛍王邸岻. Then if 警 is the mass matrix of 

the rigid body and 懸王 is the body’s generalized velocity, we immediately get 警 糾 懸王 噺 繋王沈陳椎痛墜痛銚鎮 
from the definition of the linear and angular momentum. Moreover, our momentum update 
rules state that the change Δ懸王 of generalized velocity 懸王 due to the application of the 

generalized impulse 繋王沈陳椎 equals Δ懸王 噺 警貸怠 糾 繋王沈陳椎. Therefore the first-order dynamics relating 

velocities 懸王 to impulses 繋王沈陳椎 is given by  

 警 糾 懸王 噺 繋王沈陳椎  (9) 

and 繋王沈陳椎痛墜痛銚鎮 can be seen as a generalized total  external impulse acting on the body that consists 

of the only term – the inertial term 岫鶏屎王, 詣屎王岻. This directly compares to the case of second-order 

dynamics that relates accelerations 欠王 to forces 繋王 by 警 糾 欠王 噺 繋王. 
If we have a set of 券 rigid bodies with mass matrices 警怠, … , 警津, generalized velocities 懸王怠, … , 懸王津 and total external impulses 盤繋王沈陳椎痛墜痛銚鎮匪怠, … , 盤繋王沈陳椎痛墜痛銚鎮匪津 then the first-order dynamics of 

the system is given by 警 糾 懸王 噺 繋王沈陳椎痛墜痛銚鎮, where 警 is a mass matrix of the system made of 警怠, … , 警津, 懸王 噺 岫懸王怠, … , 懸王津岻 and 繋王沈陳椎痛墜痛銚鎮 噺 岾盤繋王沈陳椎痛墜痛銚鎮匪怠, … , 盤繋王沈陳椎痛墜痛銚鎮匪津峇. Analogously to the 

acceleration case, we call 懸王 the velocity of the system and 繋王沈陳椎痛墜痛銚鎮 the total external impulse 

exerted on the system (system momentum). 

3.3.2 Constraints 

We can now transfer everything we know about acceleration-level constraints, defined with 

respect to accelerations and forces, to the realm of velocity-level constraints, defined with 

respect to velocities and impulsive forces. There is no need to do any derivations because 

acceleration-level formulation of rigid body dynamics exactly corresponds to the velocity-

level formulation of the impulsive dynamics.  The only differences are due to the fact that 

we will now work with system velocities 懸王, impulsive constraint forces 繋王沈陳椎頂  and 
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momentums 繋王沈陳椎痛墜痛銚鎮 instead of accelerations 欠王, constraint forces 繋王頂 and total external forces 繋王痛墜痛銚鎮. In consequence, the same algorithms can be used to implement velocity constraints. 

We define velocity level constraint 件 as follows. The constraint acts on two bodies 畦沈 and 稽沈, 
has a dimensionality 兼沈 and is specified by two 兼沈 抜 は matrices 蛍沈,凋日 and 蛍沈,喋日and a right-

hand-side vector 倦屎王沈 of length 兼沈. The constraint requests either 蛍沈,凋日 糾 懸王凋日 髪 蛍沈,喋日 糾 懸王喋日 噺 倦屎王沈, 蛍沈,凋日 糾懸王凋日 髪 蛍沈,喋日 糾 懸王喋日 判 倦屎王沈 or 蛍沈,凋日 糾 懸王凋日 髪 蛍沈,喋日 糾 懸王喋日 半 倦屎王沈 and is implemented by exerting a constraint 

impulse 盤繋王頂沈匪沈陳椎 噺 蛍沈脹 糾 膏王沈 determined by the values of multipliers 膏王沈. In addition, if bounds 

on the valid multiplier values 膏王沈鎮墜 判 ど屎王 and 膏王沈朕沈 半 ど屎王 are provided, then the constraint describes 

a bounded equality constraint 件 that requests 盤膏王沈鎮墜匪賃 判 盤膏王沈匪賃 判 盤膏王沈朕沈匪賃 and implements the 

equality constraint 蛍沈,凋日 糾 懸王凋日 髪 蛍沈,喋日 糾 懸王喋日 噺 倦屎王沈 for velocities 懸王凋日 and 懸王喋日  subject to constraint 

impulse limits given by 膏王沈鎮墜 and 膏王沈朕沈 . Multipliers 膏王 can be computed by solving the same LCP 

problems like before. If there are 潔 constraints, we will get 畦 噺 蛍 糾 警貸怠 糾 蛍脹 and 決屎王 噺 蛍 糾 警貸怠 糾繋王沈陳椎痛墜痛銚鎮 伐 倦屎王, where 倦屎王 噺 盤倦屎王怠, … , 倦屎王頂匪. 

3.4 Position constraints 

Motion control constraints are most often specified on the position level because it is the 
natural way of expressing desired motion. In the earlier section, we have already discussed 
how position level constraints can be implemented either on the acceleration or velocity 
level, but this time, we will do it more thoroughly and will also show how prior constraint 
errors due to numerical inaccuracies could be reduced during simulation.  
We never enforce constraints directly on the position level. Position level enforcement 
would require use of custom equations of motion specific to the set of constraints. As a 
result equations would have to change each time the constraint set is updated. For the rest 
of the section, we will assume we have 券 rigid bodies and 潔 position-level constraints. 
We define position level constraint 件 as follows. The constraint acts on two bodies 畦沈 and 稽沈, 
has a dimensionality 兼沈 and is specified by a function 系王椎沈 盤圏王凋日 , 圏王喋日匪 樺 三陳日 that is differentiable 
with respect to time so that its velocity level and acceleration level formulations (consistent 
with our prior definitions) can be obtained by differentiation. Position level equality constraint 件 requests that 系王椎沈 盤圏王凋日 , 圏王喋日 匪 噺 ど屎王 for generalized positions 圏王凋日 and 圏王喋日  and the value of 系王椎沈 盤圏王凋日 , 圏王喋日匪 can intuitively be thought of as a measurement of the position error for bodies at 
the position configuration 岫圏王凋日 , 圏王喋日岻. Position level greater-or-equal constraint 件 requests that 系王椎沈 盤圏王凋日 , 圏王喋日匪 半 ど屎王 and position level less-or-equal constraint 件 requests that 系王椎沈 盤圏王凋日 , 圏王喋日匪 判 ど屎王. 
3.4.1 Acceleration or velocity level 

We use constraint forces to implement position level constraints in an incremental way. We 
start from an initial state that is consistent with the constraint formulation (such that 
positions and velocities are valid with respect to the position level and velocity level 
formulations of the constraints) and then apply constraint forces to ensure that the velocity 
level and position level constraints remain maintained. Alternatively, we start from a state 
that is consistent with the position level formulations and then apply constraint impulses to 
ensure that the position level constraints remain maintained.  
Please note that whenever an impulse is applied to a body, its velocity changes. In 
consequence, conditions that have to be met so that a particular constraint could be 
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implemented on the acceleration level need no longer be valid after the impulse is applied and 
so it cannot be reliably determined in advance which constraints can be implemented on the 
acceleration level. To address this issue, we implement all constraints on the velocity level 
whenever there is at least one position constraint that has to be implemented on the velocity level. 

3.4.2 Equality constraints with stabilization 

Consider the position level equality constraint 系王椎沈 盤圏王凋日 , 圏王喋日匪 噺 ど屎王. By differentiating 系王椎沈 盤圏王凋日 , 圏王喋日匪 噺 ど屎王 with respect to time, we get a corresponding velocity level formulation of 

the position constraint in the form of 系王塚沈盤懸王凋日 , 懸王喋日匪 噺 ど屎王, where 系王塚沈盤懸王凋日 , 懸王喋日匪 噺 擢擢痛 系王椎沈 盤圏王凋日 , 圏王喋日匪 噺蛍沈,凋日 糾 懸王凋日 髪 蛍沈,喋日 糾 懸王喋日 . By differentiating this velocity constraint, we get a corresponding 

acceleration level formulation 系王銚沈 盤欠王凋日 , 欠王喋日 匪 噺 ど屎王, where 系王銚沈 盤欠王凋日 , 欠王喋日匪 噺 擢擢痛 系王塚沈盤懸王凋日 , 懸王喋日匪 噺 蛍沈,凋日 糾欠王凋日 髪 蛍沈,喋日 糾 欠王喋日 伐 潔王沈 and 潔王沈 噺 伐蛍岌沈,凋日 糾 懸王凋日 伐 蛍岌沈,喋日 糾 懸王喋日 . The position level constraint 件 系王椎沈 噺 ど屎王 can 

thus be implemented incrementally either (1) on the acceleration level, by starting from a 

state where 系王椎沈 噺 系王岌椎沈 噺 ど屎王 and applying constraint forces so that 系王岑椎沈 噺 ど屎王 or (2) on the velocity 

level, by starting from a state where 系王椎沈 噺 ど屎王 and applying constraint impulses so that 系王岌椎沈 噺 ど屎王. 
In the first case, constraint forces are applied under the assumption that 系王椎沈 噺 系王岌椎沈 噺 ど屎王, while 

in the second case, constraint impulses are applied under the assumption that 系王椎沈 噺 ど屎王. In 

practice, however, these assumptions often do not hold for various pragmatic reasons. For 
example, the numerical solver that integrates the equations of motion incurs an integration 
error or constraint forces are computed with an insufficient precision. 
Let’s assume we implement the position level constraint 件 on the velocity level. If the 

constraint is currently broken, that is 系王椎沈 塙 ど屎王, we want to generate a constraint impulse so 

that the constraint error 系王椎沈   will be driven towards a zero vector. This is called constraint 

stabilization. Fortunately, simple stabilization can be implemented by following a procedure 

suggested in (Cline, 2002). Instead of requiring that 系王岌椎沈 噺 ど, we can require that  

 系王岌椎沈 噺 伐系王椎沈 糾 糠 , (10) 

where 糠 is a small positive value (dependent on the integration step size) that determines 
the speed with which the constraint is stabilized. Then, if 建 is the current time, we have 系王椎沈 岫建 髪 Δ建岻 蛤 系王椎沈 岫建岻 髪 Δ建 糾 系王岌椎沈 岫建岻 噺 系王椎沈 岫建岻 糾 岫な 伐 Δ建 糾 糠岻 and so we can reduce the position error 

by simply biasing the request on the desired velocity. 
Analogously to the previous case, if we implement the position level constraint 件 on the 

acceleration level, we need to reduce both the position error 系王椎沈  as well as velocity error 系王岌椎沈 . 

That could be done by biasing the request on the desired acceleration 系王岑椎沈 . Instead of 

requiring that 系王岑椎沈 噺 ど屎王 we can require  

 系王岑椎沈 噺 伐系王椎沈 糾 糠 伐 系王岌椎沈 糾 紅,  (11) 

where 糠 and 紅 are positive constants. Because 系王岌椎沈 噺 蛍沈 糾 懸王 we get 系王岑椎沈 噺 伐系王椎沈 糾 糠 伐 蛍沈 糾 懸王 糾 紅. 

Plugging these equations into our constraint definitions, we can therefore implement the 
position level equality constraint 件 with stabilization by submitting either the velocity level 
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