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1. Introduction 

Over the past decade, physics-based simulation has become a key enabling technology for 

variety of applications. It has taken a front seat role in computer games, animation of virtual 

worlds and robotic simulation. New applications are still emerging and physics is becoming 

an integral part of many new technologies that might have been thought of not being 

directly related to physics. For example, physics has been recently used to explain and 

recover the motion of the subject from video (Vondrak et al., 2008). Unfortunately, despite 

the availability of various simulation packages, the level of expertise required to use 

physical simulation correctly is quite high. The goal of this chapter is thus to establish 

sufficiently strong grounds that would allow the reader to not only understand and use 

existing simulation packages properly but also to implement their own solutions if 

necessary. We choose to model world as a set of constrained rigid bodies as this is the most 

commonly used approximation to real world physics and such a model is able to deliver 

predictable high quality results in real time. To make sure bodies, affected by various forces, 

move as desired, a mechanism for controlling motion through the use of constraints is 

introduced. We then apply the approach to the problem of physics-based animation 

(control) of humanoid characters. 

We start with a review of unconstrained rigid body dynamics and introduce the basic 

concepts like body mass properties, state parameterization and equations of motion. The 

derivations will follow (Baraff et al., 1997) and (Erleben, 2002), using notation from (Baraff, 

1996). For background information, we recommend reading (Eberly, 2003; Thornton et al., 

2003; Bourg, 2002). We then move to Lagrangian constrained rigid body dynamics and show 

how constraints on body accelerations, velocities or positions can be modeled and 

incorporated into simpler unconstrained rigid body dynamics. Various kinds of constraints 

are discussed, including equality constraints (required for the implementation of “joint 

motors”), inequality constraints (used for the implementation of “joint angle limits”) and 

bounded equality constraints (used for implementation of motors capable of generating 

limited motor forces). We then reduce the problem of solving for constraint forces to the 

problem of solving linear complementarity problems. Finally, we show how this method 

can be used to enforce body non-penetration and implement a contact model, (Trinkle et al., 

1997; Kawachi et al., 1997). 
Source: Motion Control, Book edited by: Federico Casolo,  
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Motion Control 2 

Lastly, we illustrate how before mentioned constraints can be used to implement composite 
articulated bodies and how these bodies can be actuated by generating appropriate motor 
torques at joints, following (Kokkevis, 2004). Various kinds of convenient joint 
parameterizations with different degrees of freedom, together with options for their 
actuation, are discussed. 
 

 

Fig. 1. Examples of constrained rigid body systems. Constraints glue bodies together at 
designated points, actuate the structures or enforce non-penetration. 

1.1 Related work 

While physical simulation is conceptually well understood, control of articulated high 

degree of freedom bodies (or characters) remains a challenging problem.  On the simulation 

side there currently exist a number of commercial and open source engines that deliver 

robust and computationaly efficient performance (e.g., Crisis, Havoc, Newton, Open 

Dynamics Engine (ODE), PhysX). Quantitative analysis of performance among some of 

these and other popular choices are discussed in (Boeing et al., 2007). However, control over 

the motion of characters within these simulators is still very limited. Those packages that do 

provide means for building user defined dynamic controllers (e.g., Euphoria by 

NaturalMotion and Dynamic Controller Toolbox (Shapiro et al., 2007)) still lack fidelity and 

ability to model stylistic variations that are important for producing realistic motions. 

In this chapter, we describe trajectory-based control (either in terms of joint angles or rigidly 

attached points) implemented in the form of constraints. This type of the control is simple, 

general, stable, and is available (or easy to implement) within any simulator environment 

that supports constraints (e.g., Crisis, ODE, Newton). That said, other control strategies have 

also been proposed and are applicable for appropriate domains and tasks. For example, 

where modeling of high fidelity trajectories is hard, one can resort to sparse set of key-poses 

with proportional derivative (PD) control (Hodgins et al., 1995); such controllers can 

produce very stable motions (e.g., human gait (Yin et al., 2007)) but often look artificial or 

robotic. Locomotion controllers with stable limit cycle behavior are popular and appealing 
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choices for various forms of cyclic gates (Laszlo et al, 1996); particularly in the robotics and 

biomechanics communities (Goswami et al., 1996).  

At least in part the challenges in control stem from the high dimensionality of the control 

space. To that end few approaches have attempted to learn low-dimensional controllers 

through optimization (Safonova et al., 2004).  Other optimization-based techniques are also 

popular, but often require initial motion (Liu et al., 2005) or existing controller (Yin et al., 

2008) for adaptation to new environmental conditions or execution speed (McCann et al.,  

2006). Furthermore, because it is unlikely that a single controller can produce complex 

motions of interest, approaches that focus on building composable controllers (Faloutsos et 

al., 2001) have also been explored. Alternatively, controllers that attempt to control high 

degree-of-freedom motions using task-based formulations, that allow decoupling and 

composing of controls required to complete a particular task (e.g., maintain balance) from 

controls required to actuate redundant degrees of freedom with respect to the task, are also 

appealing (Abe et al., 2006). In robotics such strategies are known as operational space 

control (Khatib, 1987; Nakamura et al., 1987).  

Here we discuss and describe trajectory-based control that we believe to strike a balance 
between the complexity and effectiveness in instances where desired motion trajectories are 
available or easy to obtain. Such control has been illustrated to be effective in the emerging 
applications, such as tracking of human motion from video (Vondrak et al., 2008). 

2. Rigid body dynamics 

Rigid bodies are solid structures that move in response to external forces exerted on them. 
They are characterized by mass density functions describing their volumes (“mass 
properties”), positions and orientations (“position information”) in the world space and 
their time derivatives (“velocity information”).  

2.1 Body space, mass properties, position, orientation 

Properties of rigid bodies are derived from an assumption that rigid bodies can be modeled 
as particle systems consisting of a large (infinite) number of particles constrained to remain 
at the same relative positions in the body spaces. Internal spatial interaction forces prevent 
bodies from changing their shapes and so as a result, any rigid body can only translate or 
rotate with respect to a fixed world frame of reference. This allows one to associate local 
coordinate frames with the bodies and define their shapes/volumes in terms of local body 
spaces that map to the world reference frame using rigid transformations. 
We describe a volume of a rigid body by a mass density function ߩ: ଷࡾ հ  ା that determinesࡾ

the body’s mass distribution over points ݎԦ௕ in the body space. The density function is non-
zero for points forming the body’s shape and zero elsewhere and its moments characterize 
the body’s response to the exerted forces. We are namely interested in total mass ݉ ൌ׬ Ԧ௖௠௕ݎ  Ԧ௕, center of massݎԦ௕ሻ dݎሺߩ ൌ ׬ ௥Ԧ್ఘሺ௥Ԧ್ሻெ  dݎԦ௕, principal moments of inertia ܫ௫௫ ൌ ׬ ቀ൫ݎԦ௬௕൯ଶ ൅ሺݎԦ௭௕ሻଶ൯ߩሺݎԦ௕ሻ dݎԦ௕, ܫ௬௬ ൌ ׬ ሺሺݎԦ௫௕ሻଶ ൅ ሺݎԦ௭௕ሻଶሻߩሺݎԦ௕ሻ dݎԦ௕, ܫ௭௭ ൌ ׬ ቀሺݎԦ௫௕ሻଶ ൅ ൫ݎԦ௬௕൯ଶቁ  Ԧ௕ andݎԦ௕ሻ dݎሺߩ

products of inertia ܫ௫௬ ൌ ׬ ൫ݎԦ௫௕ݎԦ௬௕൯ߩሺݎԦ௕ሻ dݎԦ௕, ܫ௫௭ ൌ ׬ ሺݎԦ௫௕ݎԦ௭௕ሻߩሺݎԦ௕ሻ dݎԦ௕, ܫ௬௭ ൌ ׬ ൫ݎԦ௬௕ݎԦ௭௕൯ߩሺݎԦ௕ሻ dݎԦ௕ 

that we record into inertia matrix 
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௕௢ௗ௬ܫ ൌ ቌ ௫௫ܫ െܫ௫௬ െܫ௫௭െܫ௫௬ ௬௬ܫ െܫ௬௭െܫ௫௭ െܫ௬௭ ௭௭ܫ ቍ. 
To place a rigid body’s volume in the world, we need to know the mapping from the body 

space to the world space. For that, we assume that the body’s center of mass lies at the origin of 

the body space, ݎԦ௖௠௕ ൌ ͲሬԦ, and construct a mapping ሾ ܴ,  Ԧ௕ in the body space݌ Ԧሿ so that a pointݔ

will get mapped to the world space point ݌Ԧ by applying a rotation ܴ, represented by a ͵ ൈ ͵ 

rotation matrix mapping body space axes to the world space axes (orientation of the body in 

the world space), followed by applying a translation ݔԦ that corresponds to the world space 

position of the body’s center of mass (position of the body in the world space), ݌Ԧ ൌ ܴ ڄ Ԧ௕݌ ൅  .Ԧݔ 

2.2 Velocity 

Having placed the body in the world coordinate frame, we would like to characterize the 
motion of this body over time. To do so we need to compute time derivatives of the position 

and orientation of the body, i.e.  
డడ௧ ሾ ܴ,  Ԧሿ. We decompose instantaneous motion overݔ

infinitesimally short time periods to the translational (linear) motion of the body’s center of 
mass and a rotational (angular) motion of the body’s volume. We first define linear velocity ݒԦ ൌ Ԧሶݔ  as the time derivative of the rigid body’s position ݔԦ, characterizing the instantaneous 
linear motion and describing the direction and speed of the body translation. Next, we 
describe the rotational motion as a rotation about a time varying axis that passes through 
the center of mass.  We define angular velocity ሬ߱ሬԦ as a world-space vector whose direction 
describes the instantaneous rotation axis and whose magnitude [݀ܽݎ ڄ  ଵ] defines theିݏ
instantaneous rotation speed. Linear and angular velocities are related such that they can 
describe velocities of arbitrary points or vectors attached to the body. For example, if ݎԦ ൌ Ԧ݌  െ  ,Ԧݔ ,Ԧ, the center of mass of the body݌ ,Ԧ is a vector between the point on the bodyݔ

then ݎԦሶ  ൌ  ሬ߱ሬԦ ൈ Ԧሶ݌ Ԧ andݎ ൌ Ԧݒ ൅ ሬ߱ሬԦ ൈ Ԧ. This can be used to derive a formula for ሶܴݎ  that says ሶܴ ൌ ሬ߱ሬԦכ ڄ ܴ, where ሬ߱ሬԦכ is a “cross-product matrix” such that ሬ߱ሬԦכ ڄ Ԧݎ ൌ  ሬ߱ሬԦ ൈ  Ԧ. It is worth notingݎ
that because ݌Ԧ is fixed in the body centric coordinate frame, so is the vector ݎԦ. 

 
Fig. 2. Illustration of the two constrained bodies in motion. 

 Ԧሻ݌Ԧሺܨ
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2.3 Force 

From previous section we have 
డడ௧ ሾ ܴ, Ԧሿݔ ൌ ሾ ሬ߱ሬԦכ ڄ ܴ,  Ԧሿ relating changes of the position andݒ

orientation to the values of the body’s linear and angular velocities. Now, we would like to 
characterize how the linear and angular velocities of a rigid body change in response to 
forces exerted on the body. Intuitively, these changes should depend on the location where 
the force is applied as well as mass distribution over the body volume. So we need to know 
not only the directions and magnitudes of the exerted forces, but also the points at which 
these forces are applied.  

To capture the effects for a single force ܨԦሺ݌Ԧሻ acting at a world space point ݌Ԧ, we define a 

force-torque pair ቂܨԦሺ݌Ԧሻ, Ԧ߬ ቀ݌Ԧ, Ԧሻቁ ቃ, where Ԧ߬݌Ԧሺܨ ቀ݌Ԧ, Ԧሻቁ݌Ԧሺܨ ൌ ሺ݌Ԧ െ Ԧሻݔ ൈ  Ԧሻ is the torque due to݌Ԧሺܨ

the force ܨԦሺ݌Ԧሻ. The torque can be imagined as a scale of the angular velocity ሬ߱ሬԦ that the rigid 

body would gain if ܨԦሺ݌Ԧሻ was the only force acting on the body and the force was exerted at ݌Ԧ. To capture the overall effects of all force-torque pairs ൣܨԦ௜ , Ԧ߬௜൧ due to all forces acting on the 
body, it is sufficient to maintain only the corresponding aggregate statistics: total force ܨԦ୲୭୲ୟ୪ ൌ  ∑ FሬԦ୧୧  and total torque Ԧ߬௧௢௧௔௟ ൌ ∑ Ԧ߬௜௜  about the center of mass of the body, ݔԦ . 
Now, we express the body’s linear and angular velocities in the form of linear and angular 
momentums whose instantaneous changes can be directly related to the values of the total 
forces and torques acting on the body. The reason for doing so is that it is actually the 
momentums that remain unchanged when no forces act on the body, not the velocities. We 

define linear momentum ሬܲԦ ൌ ݉ ڄ ሬԦܮ Ԧ and angular momentumݒ ൌ ܫ ڄ ሬ߱ሬԦ where ܫ ൌ ܴ ڄ ௕௢ௗ௬ܫ ڄ ்ܴ. 

The relation between the velocity and force information is then given by derivatives of 

linear and angular momentum with respect to time, ሬܲԦሶ ൌ ሬԦሶܮ Ԧ௧௢௧௔௟ andܨ ൌ Ԧ߬௧௢௧௔௟. 
2.4 Equations of motion 

We are now ready to present complete equations describing motion of a set of rigid bodies 
in Newtonian dynamics under the effect of forces. The equations are first order ordinary 
differential equations  (ODEs). To simulate the system, one has to numerically integrate the 
equations of motion, which can be done by using standard numerical ODE solvers. We 
explore several formulations of the equations of motion below. 

2.4.1 Momentum form 

We start with the momentum form that makes the linear and angular momentum a part of a 
rigid body’s state and builds directly upon the concepts presented in earlier sections. To 
make the body’s state complete, only the position and orientation information has to be 

added to the state. Therefore, the state is described by a vector ݕԦ, ݕԦ ൌ ൫ݔԦ, ܴ, ሬܲԦ,  Ԧ isݔ ሬԦ൯, whereܮ

the position of the body’s center of mass, ܴ is the orientation of the body and ሬܲԦ and ܮሬԦ are the 
body’s linear and angular momentums. The equation of motion for the rigid body in the 

momentum form is then given by 
డ௬ሬԦడ௧ ൌ ሺݒԦ, ሬ߱ሬԦכ ڄ ܴ, Ԧ௧௢௧௔௟ܨ , Ԧ߬௧௢௧௔௟ሻ, where ܨԦ௧௢௧௔௟ and Ԧ߬௧௢௧௔௟ are the 

total external force and torque exerted on the body and ݒԦ and ሬ߱ሬԦ are auxiliary quantities 

derived from the state vector ݕԦ, Ԧݒ ൌ ݉ିଵ ڄ ሬܲԦ, ܫ ൌ ܴ ڄ ௕௢ௗ௬ܫ ڄ ்ܴ , ଵିܫ ൌ ܴ ڄ ௕௢ௗ௬ିଵܫ ڄ ்ܴ , ሬ߱ሬԦ ൌ ଵିܫ ڄ  .ሬԦܮ

If there are ݊ rigid bodies in the system, the individual ODE equations are combined into a 
single ODE by concatenating the body states ݕԦଵ, ڮ , Ԧݕ Ԧ௡ into a single state vectorݕ ൌሺݕԦଵ, ڮ ,  Ԧ௡ሻ and lettingݕ

డ௬ሬԦడ௧ ൌ ቀడ௬ሬԦభడ௧ , ڮ , డ௬ሬԦ೙డ௧ ቁ. 
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2.4.2 Velocity form 

As a conceptually more common alternative, the equations of motion can be reformulated so 
that linear and angular momentums in the state vector are replaced with linear and angular 
velocities. In this formulation, the state vector ݕԦ is defined as  

Ԧݕ  ൌ ሺݔԦ, ܴ, ,Ԧݒ ሬ߱ሬԦሻ  (1) 

To formulate the right-hand-side vector of the ODE, we need know time derivatives of the 
linear and angular velocities and relate them to external forces and torques. We define linear 

acceleration Ԧܽ of a rigid body as the acceleration of the body’s center of mass, that is, Ԧܽ ൌ Ԧሶݒ ൌݔԦሷ , and because ሬܲԦሶ ൌ Ԧ௧௢௧௔௟ we immediately get Ԧܽܨ ൌ ݉ିଵ ڄ  Ԧ௧௢௧௔௟. For the angular motion, weܨ

define angular acceleration ߙԦ as the time derivative of the body’s angular velocity, ߙԦ ൌ  ሬ߱ሬԦሶ , and 
it can be shown that ߙԦ ൌ ଵିܫ ڄ ሺ Ԧ߬௖௢௥௜௢௟௜௦ ൅ Ԧ߬௧௢௧௔௟ሻ, where Ԧ߬௖௢௥௜௢௟௜௦ ൌ ሺܫ ൈ ሬ߱ሬԦሻ ൈ ሬ߱ሬԦ is an implicit 
internal inertial (coriolis) torque due to body rotation and Ԧ߬௧௢௧௔௟ is the total external torque 
applied on the body. This way we get the equation of motion for a single1 rigid body in the 
velocity form 

 
డ௬ሬԦడ௧ ൌ ቀݒԦ, ሬ߱ሬԦכ ڄ ܴ, ݉ିଵ ڄ Ԧ௧௢௧௔௟ܨ , ଵିܫ ڄ ൫ሺܫ ൈ ሬ߱ሬԦሻ ൈ ሬ߱ሬԦ ൅ Ԧ߬௧௢௧௔௟൯ቁ (2) 

2.4.3 Generalized form 

We now elaborate on the velocity-form of the equation of motion, define the notion of 
generalized velocities and forces and the concept of mass matrices for rigid bodies, which will 
allow us to treat rigid bodies as a kind of particles moving in ࡾ଺, simplifying many 
equations. We will call any block vector consisting of a block due to a linear quantity and a 
block due to the corresponding angular quantity a generalized quantity. That way, we obtain 
generalized velocity ݒԦ௚௘௡ ൌ ሺݒԦ, ሬ߱ሬԦሻ, generalized acceleration Ԧܽ௚௘௡ ൌ ሺ Ԧܽ,  Ԧ), generalized total externalߙ

force ܨԦ௚௘௡௧௢௧௔௟ ൌ ൫ܨԦ௧௢௧௔௟ , Ԧ߬௧௢௧௔௟൯ and generalized coriolis force  ܨԦ௚௘௡ ௖௢௥௜௢௟௜௦ ൌ ሺͲሬԦ, Ԧ߬௖௢௥௜௢௟௜௦ሻ. In addition, 

we define generalized position ݍԦ ൌ ሺݔԦ, ሬܴԦሻ that encodes both position of the body’s center of 
mass and orientation in ͵ܦ space. 
We now define the mass matrix M of a rigid body which is a ͸ ൈ ͸ time-dependent matrix 
consisting of four ͵ ൈ ͵ blocks encoding the body’s mass properties, 

ܯ  ൌ ቀ݉ ڄ ܧ ͲͲ  ቁ,  (3)ܫ

and ܧ is a ͵ ൈ ͵ identity matrix. From the previous section, we know that ݉ ڄ Ԧܽ ൌ ܫ Ԧ௧௢௧௔௟ andܨ ڄ Ԧߙ ൌ Ԧ߬௧௢௧௔௟ ൅ Ԧ߬௖௢௥௜௢௟௜௦ which can be rewritten using the mass matrix simply as ܯ ڄ Ԧܽ௚௘௡ ൌܨԦ௚௘௡௧௢௧௔௟ ൅  Ԧ௚௘௡ ௖௢௥௜௢௟௜௦ is implicitlyܨ Ԧ௚௘௡ ௖௢௥௜௢௟௜௦. Let’s assume that the generalized coriolis forceܨ

incorporated into to the total generalized external force ܨԦ௚௘௡௧௢௧௔௟ and, to improve readability, 

let’s remove the ௚௘௡ subscripts and omit the “generalized” adjective whenever it is clear 

that the generalized notation is used. This lets us write  

ܯ  ڄ Ԧܽ ൌ  Ԧ௧௢௧௔௟  (4)ܨ 

                                                                 
1 As for the momentum form, equation of motion for a set of ݊ bodies is obtained by 
“cloning” the equation for a single body n-times. 
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which yields a relation between the total force ܨԦ௧௢௧௔௟  and the total acceleration Ԧܽ. Because the 

relation is linear, this equation also holds for any force ܨԦ acting on the body and the 

corresponding acceleration Ԧܽ ൌ ଵିܯ ڄ  .Ԧ2ܨ Ԧ the body would gain in response to the application ofܨ
The relation resembles Newton’s Second Law for particles and rigid bodies can thus be 
imagined as special particles with time-varying masses ܯ that move in ࡾ଺. 
3. Constraints 

One of the challenges one has to face in physical simulation is how to generate appropriate 
forces so that rigid bodies would move as desired. Instead of trying to generate these forces 
directly, we describe desired motion in terms of motion constraints on accelerations, velocities 
or positions of rigid bodies and then use constraint solver to solve for the forces. We still use 
the same equations of motion (and numerical solvers) to drive our bodies like before, but 
this time, we introduce constraint forces that implicitly act on constrained bodies so that 
given motion constraints are enforced. We study the approach of Lagrange multiplier method 
that handles each constraint in the same uniform way and allows to combine constraints 
automatically. Examples of constrained rigid bodies are given in Fig. 1. 
In general, the motion constraint on the position or orientation of a body will subsequently 
result in the constraints on its velocity and acceleration (to ensure that there is no velocity or 
acceleration in the constrained direction, leading to violation of constraint after integration 
of the equations of motion); similarly a constraint on velocity will impose a constraint on the 
acceletation. We will discuss these implications in the following section. A first-order rigid 
body dynamics with impulsive formulation of forces (discussed in Section 3.3.1) allows one 
to ignore the acceleration constraints in favor of simplicity, but at expense of inability to 
support higher-order integration schemes.  

3.1 Example: point-to-point equality constraint 

Let’s start with a motivational example. Imagine we are given two bodies and we want to 
enforce a position constraint that stipulates that point ݌Ԧଵ ൌ Ԧଵݔ ൅  Ԧଵattached to the first bodyݎ
is to coincide with a point ݌Ԧଶ ൌ Ԧଶݔ  ൅  Ԧଶ attached to the second body (see Fig. 2 where theݎ
two bodies are denoted as A and B), making the two bodies connected at ݌Ԧଵ ൌ  Ԧଶ and݌
preventing them from tearing apart. We can express this position-level constraint as a vector 

equation ܥԦ௣ሺݍԦଵ, Ԧଶሻݍ ൌ׷ Ԧଶ݌ െ Ԧଵ݌ ൌ ͲሬԦ א ,Ԧଵݍ ଷ, defined in terms of generalized positionsࡾ  Ԧଶ ofݍ

the two bodies, such that all valid position pairs, for which the constraint is maintained, 

correspond to a manifold ܥԦ௣ሺݍԦଵ, Ԧଶሻݍ ൌ ͲሬԦ. Granted the constraint is maintained already, the 

goal is to compute an appropriate constraint force so that ሺݍԦଵ,  Ԧଶሻ stays on the manifoldݍ

during the state update. Given the total external forces ܨԦଵ௧௢௧௔௟and ܨԦଶ௧௢௧௔௟ acting on the two 
bodies, we will construct a constraint force such that it would cancel exactly those 

components of the ܨԦଵ௧௢௧௔௟ and ܨԦଶ௧௢௧௔௟ vectors that would make the bodies accelerate away 
from the manifold. To do this, we will reformulate our position-level constraint to a 
constraint on body accelerations and from that derive the constraint force. Our constraint 
formulation will give us a set of basis vectors that need be combined to get the constraint 

                                                                 
2 If ܨԦ refers to the total external force exerted on the body, coriolis force is assumed to be 

included in ܨԦ. 
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force. Appropriate coefficients of this combination are computed by solving a system of 
linear equations. 
Let’s assume that at the current time instant the bodies are positioned so that the constraint 

is maintained, that is, ܥԦ௣ ൌ ͲሬԦ. To make sure the constraint will also be maintained in the 

future, we have to enforce ܥԦሶ௣ ൌ ͲሬԦ. Let’s have a look at what ܥԦሶ௣ looks like, ܥԦ௣ሶ ൌ  డడ௧ ሺ݌Ԧଶ െ݌Ԧଵሻ ൌ డడ௧ ሺݔԦଶ ൅ Ԧଶݎ െ Ԧଵݔ െ Ԧଵሻݎ ൌ Ԧሶଶݔ ൅ ሬ߱ሬԦଶ ൈ Ԧଶݎ െ Ԧሶଵݔ െ ሬ߱ሬԦଵ ൈ Ԧଵݎ ൌ Ԧሶଶݔ െ Ԧଶݎ ൈ ሬ߱ሬԦଶ െ Ԧሶଵݔ ൅ Ԧଵݎ ൈ ሬ߱ሬԦଵ ൌݔԦሶଶ െ כԦଶݎ ڄ ሬ߱ሬԦଶ െ Ԧሶଵݔ ൅ כԦଵݎ ڄ ሬ߱ሬԦଵ ൌ ሺെܧ ሻכԦଵݎ ڄ Ԧଵݒ ൅ ሺܧ െݎԦଶכሻ ڄ Ԧଶݒ ൌ  ሺെܧ ܧ     כԦଵݎ െݎԦଶכሻ ڄ ൬ݒԦଵݒԦଶ൰ ൌሺܬଵ ଶሻܬ ڄ ൬ݒԦଵݒԦଶ൰, where ܬଵ and ܬଶ are ͵ ൈ ͸ matrices called the Jacobian matrices due to the 

position constraint ܥԦ௣ and the first and the second body. So we need to enforce another 

constraint ܥԦ௩ሺݒԦଵ, Ԧଶሻݒ ൌ׷ ଵܬ ڄ Ԧଵݒ ൅ ଶܬ ڄ Ԧଶݒ ൌ ͲሬԦ, this time formulated in terms of generalized 
velocities ݒԦଵ,  Ԧଶ. This is good because we were able to reformulate the original constraintݒ
specified in terms of generalized positions to a constraint specified in terms of generalized 
velocities. 

Let’s assume that the velocity constraint also holds, that is, ܥԦ௩ ൌ ͲሬԦ, and let’s guarantee the 

velocity constraint will be maintained in the future by requesting ܥԦ௩ሶ ൌ ͲሬԦ (this will also 

guarantee that the original position-level constraint will be maintained, because ܥԦ௣ ൌ ͲሬԦ at 

the current time instant). We have ܥԦ௩ሶ ൌ డడ௧ ሺܬଵ ڄ Ԧଵݒ ൅ ଶܬ ڄ Ԧଶሻݒ ൌ ଵܬ ڄ Ԧܽଵ ൅ ଶܬ ڄ Ԧܽଶ ൅ ሶଵܬ ڄ Ԧଵݒ ൅ ሶଶܬ ڄ  Ԧଶݒ

and so we obtain a constraint ܥԦ௔ሺ Ԧܽଵ, Ԧܽଶሻ ൌ׷ ଵܬ ڄ Ԧܽଵ ൅ ଶܬ ڄ Ԧܽଶ െ Ԧܿ ൌ ͲሬԦ, where ܬଵ and ܬଶ are the 

Jacobian matrices defined above, ܬሶଵand ܬሶଶ are their time derivatives and Ԧܿ ൌ െܬሶଵ ڄ Ԧଵݒ െ ሶଶܬ ڄ  .Ԧଶݒ
This constraint is formulated directly in terms of generalized accelerations Ԧܽଵ, Ԧܽଶ and because 

we already know the relation between accelerations and forces, this constrains the forces 

that can act on the two bodies. To complete the formulation of ܥԦ௔, we need to get the value 

of Ԧܿ. It is usually easier to compute Ԧܿ directly from ܥԦ௩ሶ  rather than by computing the time 

derivatives of the Jacobian matrices. We can for example do, ܥԦ௣ሷ ൌ Ԧ௩ሶܥ ൌ డడ௧ ൫െݔԦሶଵ െ ሬ߱ሬԦଵ ൈ Ԧଵ൯ݎ ൅డడ௧ ൫ݔԦሶଶ െ ሬ߱ሬԦଶ ൈ Ԧଶ൯ݎ ൌ ቀെݔԦሷଵ െ ሬ߱ሬԦሶ ଵ ൈ Ԧଵݎ െ ሬ߱ሬԦଵ ൈ ሺ ሬ߱ሬԦଵ ൈ Ԧଵሻቁݎ ൅ ቀݔԦሷଶ ൅ ሬ߱ሬԦሶ ଶ ൈ Ԧଶݎ ൅ ሬ߱ሬԦଶ ൈ ሺ ሬ߱ሬԦଶ ൈ Ԧଶሻቁݎ ൌቀെݔԦሷଵ ൅ כԦଵݎ ڄ ሬ߱ሬԦሶ ଵ െ ሬ߱ሬԦଵ ൈ ሺ ሬ߱ሬԦଵ ൈ Ԧଵሻቁݎ ൅ ቀݔԦሷଶ െ כԦଶݎ ڄ ሬ߱ሬԦሶ ଶ ൅ ሬ߱ሬԦଶ ൈ ሺ ሬ߱ሬԦଶ ൈ Ԧଶሻቁݎ ൌ ሺെܧ ܧ     כԦଵݎ െݎԦଶכሻ ൬ڄ ԦܽଵԦܽଶ൰ െ ሬ߱ሬԦଵ ൈ ሺ ሬ߱ሬԦଵ ൈ Ԧଵሻݎ ൅ ሬ߱ሬԦଶ ൈ ሺ ሬ߱ሬԦଶ ൈ Ԧଶሻ and obtain Ԧܿݎ ൌ ሬ߱ሬԦଵ ൈ ሺ ሬ߱ሬԦଵ ൈ Ԧଵሻݎ െ ሬ߱ሬԦଶ ൈ ሺ ሬ߱ሬԦଶ ൈ  .Ԧଶሻݎ
So given our original constraint ܥԦ௣ሺݍԦଵ, Ԧଶሻݍ ൌ׷ Ԧଶ݌ െ Ԧଵ݌ ൌ ͲሬԦ and assuming ܥԦ௣ ൌ ͲሬԦ and ܥԦ௣ሶ ൌ ͲሬԦ 
we were able to reduce the problem of maintaining ܥԦ௣ ൌ ͲሬԦ to the problem of enforcing ܥԦሷ௣ ൌ ͲሬԦ which is an acceleration-level constraint with ܬଵ ൌ ሺെܧ ଶܬ ,ሻכԦଵݎ ൌ ሺ ܧ െݎԦଶכሻ and Ԧܿ ൌ ሬ߱ሬԦଵ ൈ ሺ ሬ߱ሬԦଵ ൈ Ԧଵሻݎ െ ሬ߱ሬԦଶ ൈ ሺ ሬ߱ሬԦଶ ൈ  Ԧଶሻ. We now need to compute the generalized constraintݎ

forces ܨԦଵ௖ and ܨԦଶ௖ to be applied to the first and second body, respectively. Lagrange multiplier 
method computes these forces as a linear combination of the rows of the Jacobian matrices 

(that are known apriori), ܨԦଵ௖ ൌ ଵ்ܬ ڄ Ԧଶ௖ܨ ,Ԧߣ ൌ ଶ்ܬ ڄ  Ԧ, and solves for the unknown coefficientsߣ

(multipliers) ߣԦ in the combination so that ܬଵ ڄ Ԧܽଵ ൅ ଶܬ ڄ Ԧܽଶ ൌ Ԧܿ after the external forces ܨԦଵ௧௢௧௔௟ 
and ܨԦଶ௧௢௧௔௟ and constraint forces ܨԦଵ௖ and ܨԦଶ௖ were applied to the bodies. This can be imagined 
as follows. Each row of the three rows in ܬଵ ڄ Ԧܽଵ ൅ ଶܬ ڄ Ԧܽଶ ൌ Ԧܿ א  ଷ defines a hypersurface inࡾ
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the space of points ሺ Ԧܽଵ, Ԧܽଶሻ and the ሺ Ԧܽଵ, Ԧܽଶሻ acceleration is valid if ሺ Ԧܽଵ, Ԧܽଶሻ lies on each of 
these hypersurfaces. Now, the normal of the ݆-th hypersurface equals the ݆-th row of ሺܬଵ  ଶሻܬ
and so in order to project ሺ Ԧܽଵ, Ԧܽଶሻ onto the ݆-th hypersurface, the force ߣ௝ ڄ ሺܬଵሻ௝ has to be 

applied to the first body and ߣ௝ ڄ ሺܬଶሻ௝ has to be applied to the second body. 

Let’s solve for the multipliers ߣԦ. For that, let’s concatenate individual vectors and matrices 
into global vectors and matrices characterizing the whole rigid body system, we get Ԧܽ ൌ ሺ Ԧܽଵ, Ԧܽଶሻ, ܬ ൌ ሺܬଵ Ԧ௧௢௧௔௟ܨ ,ଶሻܬ ൌ ൫ܨԦଵ௧௢௧௔௟ , Ԧ௖ܨ ,Ԧଶ௧௢௧௔௟൯ܨ ൌ ்ܬ ڄ Ԧߣ  ൌ ൫ܨԦଵ௖ , ܯ ,Ԧଶ௖൯ܨ ൌ  ൬ܯଵ ͲͲ ܬ  ଶ൰ andܯ ڄ Ԧܽ ൌ  Ԧܿ. From the section on equations of motion, we get that the acceleration Ԧܽ of the rigid 

body system after the total external force ܨԦ௧௢௧௔௟ and constraint force ܨԦ௖ are added to the 

system equals Ԧܽ ൌ ଵିܯ ڄ ൫ܨԦ௧௢௧௔௟ ൅ Ԧ௖൯ܨ ൌ ଵିܯ ڄ ൫ܨԦ௧௢௧௔௟ ൅ ்ܬ ڄ Ԧ൯ߣ ൌ ଵିܯ ڄ Ԧ௧௢௧௔௟ܨ ൅ ଵିܯ  ڄ ்ܬ ڄ  .Ԧߣ

This acceleration has to satisfy the constraint ܬ ڄ Ԧܽ ൌ  Ԧܿ and so ܬ ڄ ଵିܯ ڄ Ԧ௧௢௧௔௟ܨ ൅ ܬ  ڄ ଵିܯ ڄ ்ܬ Ԧߣڄ ൌ Ԧܿ, ሺܬ ڄ ଵିܯ ڄ ሻ்ܬ ڄ Ԧߣ ൅ ൫ܬ ڄ ଵିܯ ڄ Ԧ௧௢௧௔௟ܨ െ Ԧܿ൯ ൌ ͲሬԦ, finally producing a system of linear 

equations ܣ ڄ Ԧߣ ൅ ሬܾԦ ൌ ͲሬԦ, where ܣ ൌ ܬ ڄ ଵିܯ ڄ ͵ is a ்ܬ ൈ ͵ matrix, ሬܾԦ ൌ ܬ ڄ ଵିܯ ڄ Ԧ௧௢௧௔௟ܨ െ Ԧܿ is a ͵ ൈ ͳ vector and ߣԦ א  Ԧ are known, constraintߣ ଷ are the multipliers to be solved for. Onceࡾ

force ܨԦ௖ ൌ ்ܬ ڄ Ԧߣ  ൌ ൫ܨԦଵ௖ ,  .Ԧଶ௖൯ is applied to the bodiesܨ

3.2 Acceleration constraints 

We will now generalize the approach from the previous section for ܿ constraints and ݊ 
bodies. The index ݅ will be used to index constraints, ݅ ൌ ͳ, … , ܿ, and the index ݆ will be used 
to index bodies, ݆ ൌ ͳ, … , ݊. Vectors ݍԦ ൌ ሺݍԦଵ, … , Ԧݒ ,Ԧ௡ሻݍ ൌ ሺݒԦଵ, … , Ԧ௡ሻ and Ԧܽݒ ൌ ሺ Ԧܽଵ, … , Ԧܽ௡ሻ will 
refer to the generalized position, velocity and acceleration of the rigid body system, ܨԦ௧௢௧௔௟ ൌ ሺܨԦଵ௧௢௧௔௟ , Ԧ௖ܨ Ԧ௡௧௢௧௔௟) will refer to the total external force exerted on the system andܨ ,… ൌ ቀ൫ܨԦ௖൯ଵ, … , ൫ܨԦ௖൯௡ቁ will refer to the total constraint force exerted on the system  due to all 

constraints.  
Let ܯ௝ be the mass matrices of the individual bodies in the system. We then have ܯ௝ ڄ Ԧܽ௝ ൌܨԦ௝௧௢௧௔௟ and so if ܯ is a square block diagonal matrix with the individual matrices ܯ௝ on the 

diagonal, which we call the mass matrix of the rigid body system, we can relate the system 

acceleration Ԧܽ due to the application of ܨԦ௧௢௧௔௟ by ܯ ڄ Ԧܽ ൌ Ԧ௧௢௧௔௟ܨ , where 

ܯ ൌ ൮ܯଵ Ͳ … ͲͲ ଶܯ … Ͳڭ ڭ ڰ Ͳڭ Ͳ …  .௡൲ܯ

Constraint ݅ acts on two bodies ܣ௜ and ܤ௜, has a dimensionality ݉௜ and removes ݉௜ degrees 

of freedom (DOFs) from the system. For example, if the two bodies are connected by a 3D 

revolute joint - ݉௜ ൌ ͵, because the joint constrains position of body ܣ௜ with respect to ܤ௜ 
such that the two are affixed at the joint location (see Fig. 2). Note that while the constraint 

removes only 3 degrees of freedom, it affects both linear and angular properties of the 

system. A hinge joint will remove additional 2 degrees of freedom, allowing only rotational 

motion about a single axis with respect to the joint, resulting in a constraint of dimension ݉௜ ൌ ͷ, etc. 

The constraint is characterized by a ݉௜ ൈ ͸݊ matrix ܬ௜  of rank ݉௜ called the constraint’s 
Jacobian matrix consisting of ݊ ݉௜ ൈ ͸ blocks due to individual bodies and a constraint 
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equation right-hand-side vector Ԧܿ௜ of length ݉௜. ܬ௜ has only two non-zero blocks, one due to 
the first constrained body ܣ௜ and one due to the second constrained body ܤ௜, referred to by ܬ௜,஺೔ and ܬ௜,஻೔ . According to the Lagrange multiplier approach, the constraint is enforced by 

applying a constraint force ܨԦ௖௜ ൌ ௜்ܬ ڄ Ԧ௜ߣ ൌ ቀ൫ܨԦ௖௜൯ଵ, … , ൫ܨԦ௖௜൯௡ቁ to the rigid body system, 

determined by the values of ݉௜ multipliers ߣԦ௜. Each row ݇ ൌ ͳ, … , ݉௜  of ܬ௜ removes one DOF 

from the system and contributes to the constraint force ܨԦ௖௜ by exerting a force ൫ߣԦ௜൯௞ ڄ ሺܬ௜ሻ௞ on 

the system. Due to the way ܬ௜ is defined, ൫ܨԦ௖௜൯஺೔ ൌ ௜,஺೔்ܬ ڄ  Ԧ௖௜൯஻೔ܨԦ௜ and ൫ߣ ൌ ௜,஻೔்ܬ ڄ   Ԧ௜ are the onlyߣ

non-zero blocks of ܨԦ௖௜ and ൫ܨԦ௖௜൯஺೔ is the constraint force applied to the first body and ൫ܨԦ௖௜൯஻೔  is 

the constraint force applied to the second body. 
Let’s stack the individual ݉௜ ൈ ͸݊ Jacobian matrices ܬ௜ by rows to a single ݉ ൈ ͸݊ Jacobian 

matrix ܬ, where ݉ ൌ  ∑ ݉௜௜  is the total number of DOFs removed from the system. ܬ is then a 

block matrix with ܿ ൈ ݊ blocks whose non-zero blocks are given by ܬ௜,஺೔ and ܬ௜,஻೔ . Then the 

total constraint force ܨԦ௖ exerted on the system equals ܨԦ௖ ൌ ∑ Ԧ௖௜௜ܨ ൌ ்ܬ ڄ Ԧߣ Ԧ, whereߣ ൌ ሺߣԦଵ, … ,  Ԧ௖ሻߣ

is a ݉ ൈ ͳ vector of Lagrange multipliers due to all constraints. Because constraints should 

not be conflicting, ܬ is assumed to have full rank. 

Let ܣ ൌ ܬ ڄ ଵିܯ ڄ ்ܬ , Ԧܿ ൌ ሺ Ԧܿଵ, … , Ԧܿ௖ሻ and ሬܾԦ ൌ ܬ ڄ ଵିܯ ڄ Ԧ௧௢௧௔௟ܨ െ Ԧܿ. Matrix ܣ is a ݉ ൈ ݉ matrix and 

can be treated as if it consisted of ܿ ൈ ܿ blocks due to individual constraint pairs such that 

the value of the ሺ݅ଵ, ݅ଶሻ-th block of size ݉௜భ ൈ ݉௜మ due to the ݅ଵ-th constraint and the ݅ଶ-th 

constraint is given by ܣ௜భ,௜మ ൌ ∑ ௜భ,௝ܬ ڄ ௝ିܯ ଵ௝ ڄ ൫ܬ௜మ,௝൯்
. Because the individual matrices ܯ௝ and ܯ௝ି ଵ are positive definite, ܯ and ିܯଵ are positive definite and so because ܬ is assumed to 

have full rank, ܣ is also positive definite. We will use ܣ௜ (with slight abuse of notation) to 

denote the ݅-th block row of ܣ due to constraint ݅. Vector ሬܾԦ is a vector of length ݉ consisting 

of ܿ blocks due to the individual constraints. We use ሬܾԦ௜ to refer to the ݅-th block of ሬܾԦ of 

length ݉௜ due to constraint ݅. 
We will now discuss specific types of constraints. Each constraint ݅ will generate a constraint 

force of the same form ܨԦ௖௜ ൌ ௜்ܬ ڄ  Ԧ௜ but different constraint types will lead to differentߣ

conditions on the legal values of the multipliers ߣԦ, essentially constraining the directions the 

constraint force can act along (can it push, can it pull or can it do both?). 

3.2.1 Equality constraints 

We define acceleration level equality constraint ݅ as follows. The constraint acts on two bodies ܣ௜ and ܤ௜, has a dimensionality ݉௜ and is specified by two ݉௜ ൈ ͸ matrices ܬ௜,஺೔ and ܬ௜,஻೔  and a 

right-hand-side vector Ԧܿ௜ of length ݉௜. The constraint requests that ܬ௜,஺೔ ڄ Ԧܽ஺೔ ൅ ௜,஻೔ܬ ڄ Ԧܽ஻೔ ൌ Ԧܿ௜ 
for accelerations Ԧܽ஺೔ and Ԧܽ஻೔ .  
The ܬ௜,஺೔ and ܬ௜,஻೔  matrices are called the Jacobian blocks due to the first and the second body 

and are supposed to have full rank. This terminology stems from the fact that if the 

acceleration-level constraint implements a position-level constraint ܥԦ௣൫ݍԦ஺೔ , Ԧ஻೔൯ݍ ൌ ͲሬԦ or a 

velocity-level constraint ܥԦ௩൫ݒԦ஺೔ , Ԧ஻೔൯ݒ ൌ ͲሬԦ then ܬ௜,஺೔ ൌ డ஼Ԧ೛డ௤ሬԦಲ೔ and ܬ௜,஻೔ ൌ డ஼Ԧ೛డ௤ሬԦಳ೔ or ܬ௜,஺೔ ൌ డ஼Ԧೡడ௩ሬԦಲ೔ and ܬ௜,஻೔ ൌ డ஼Ԧೡడ௩ሬԦಳ೔. The constraint is an equality constraint because it is described by a linear 

equality. 
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Let’s derive conditions on ߣԦ due to the acceleration level equality constraint ݅. Using our 
rigid body system dynamics equation, we get that the system acceleration Ԧܽ after the total 

external force ܨԦ௧௢௧௔௟  and total constraint force ܨԦ௖ ൌ ்ܬ ڄ Ԧ are applied to the system equals Ԧܽߣ ൌ ଵିܯ ڄ ሺܨԦ௧௢௧௔௟ ൅ ்ܬ ڄ ௜ܬ Ԧሻ. The constraint equation requests thatߣ ڄ Ԧܽ െ Ԧܿ௜ ൌ ͲሬԦ which means 

that  ܬ௜ ڄ Ԧܽ െ Ԧܿ௜ ൌ ሺ ܬ ڄ Ԧܽ െ Ԧܿሻ௜ ൌ ൫ܬ ڄ ଵିܯ ڄ Ԧ௧௢௧௔௟ܨ ൅ ܬ ڄ ଵିܯ ڄ ்ܬ ڄ Ԧߣ െ Ԧܿ൯௜ ൌ ቀሺܬ ڄ ଵିܯ ڄ ሻ்ܬ ڄ Ԧߣ ൅൫ܬ ڄ ଵିܯ ڄ Ԧ௧௢௧௔௟ܨ െ Ԧܿ൯ቁ௜ ൌ ൫ܣ ڄ Ԧߣ ൅ ሬܾԦ൯௜ ൌ ௜ܣ ڄ Ԧߣ ൅ ሬܾԦ௜ ൌ  ͲሬԦ. Hence we get that equality constraint ݅ 
requires that  

௜ܣ  ڄ Ԧߣ ൅ ሬܾԦ௜ ൌ ͲሬԦ  (5) 

which is an equality constraint on the values of ߣԦ. 
3.2.2 Inequality constraints 

Let’s think of enforcing a different kind of constraint such that the equality sign ൌ in the 

constraint’s formulation is replaced with either a greater-than-or-equal sign ൒ or a less-than-

or-equal sign ൑. For example, if ܥ௣ሺݍԦଵ,  Ԧଶሻ measures a distance of a ball from the groundݍ

plane, we might want to enforce a one-dimensional position constraint ܥ௣ሺݍԦଵ, Ԧଶሻݍ ൒ Ͳ 

requesting that the ball lies above the ground. Assuming that both ܥ௣ሺݍԦଵ, Ԧଶሻݍ ൌ Ͳ and ܥ௣ሶ ሺݍԦଵ, Ԧଶሻݍ ൌ Ͳ (the ball rests on the ground), the constraint can be implemented by 

maintaining ܥሷ௣ሺݍԦଵ, Ԧଶሻݍ ൒ Ͳ, which is an acceleration-level greater-or-equal constraint. 

3.2.2.1 Greater-or-equal constraints 

We define acceleration level greater-or-equal constraint ݅ as follows. The constraint acts on two 

bodies ܣ௜ and ܤ௜, has a dimensionality ݉௜ and is specified by two ݉௜ ൈ ͸ matrices ܬ௜,஺೔ and ܬ௜,஻೔  and a right-hand-side vector Ԧܿ௜ of length ݉௜. The constraint requests that ܬ௜,஺೔ ڄ Ԧܽ஺೔ ൅ ௜,஻೔ܬ Ԧܽ஻೔ڄ ൒ Ԧܿ௜ for accelerations Ԧܽ஺೔ and Ԧܽ஻೔ . 
Let’s present conditions on ߣԦ due to the acceleration level greater-or-equal constraint ݅. 
Similarly to the equality case, ܬ௜,஺೔ ڄ Ԧܽ஺೔ ൅ ௜,஻೔ܬ ڄ Ԧܽ஻೔ ൒ Ԧܿ௜ can be rewritten as (1) ܬ௜,஺೔ ڄ Ԧܽ஺೔ ൅ ௜,஻೔ܬ Ԧܽ஻೔ڄ െ Ԧܿ௜ ൌ ௜ܬ ڄ Ԧܽ െ Ԧܿ௜ ൌ ௜ܣ ڄ Ԧߣ ൅ ሬܾԦ௜ ൒ ͲሬԦ, which is an inequality greater-or-equal constraint on 

the values of ߣԦ. Now, let’s recall that in Lagrange multiplier approach, the goal of ܨԦ௖௜ is to cancel 

those components of ܨԦ௧௢௧௔௟ that would make the bodies accelerate towards invalid states. In 
the case of an equality constraint, the bodies were restricted to remain on the intersections of 

the hypersurfaces due to the constraint’s DOFs and ܨԦ௖௜ cancelled accelerations along the 
directions of the hypersurface normals. In the case of a greater-or-equal constraint, however, 
the bodies can move away from a hypersurface along the direction of the hypersurface’s 
normal, but not in the opposite direction. In other words, positive accelerations along the 

positive directions of the normals are unconstrained and therefore (2) ߣԦ௜ ൒ ͲሬԦ (the constraint 
force can not pull the bodies back to the hypersurface). In addition, (3) if the bodies are 

already accelerating to the front of the hypersurface ݇, ൫ܬ௜,஺೔ ڄ Ԧܽ஺೔ ൅ ௜,஻೔ܬ ڄ Ԧܽ஻೔ െ Ԧܿ௜൯௞ ൐ Ͳ, then 

the constraint force due to that hypersurface must vanish, that is ൫ߣԦ௜൯௞ ൌ Ͳ, so that no energy 

would be added to the system (constraint force is as “lazy” as possible). These conditions 

can be restated in terms of the ݅-th block row of matrix ܣ and the ݅-th block of vector ሬܾԦ as 
follows, 
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Motion Control 12 ௜ܣ ڄ Ԧߣ ൅ ሬܾԦ௜ ൒ ͲሬԦ ߣԦ௜ ൒ ͲሬԦ ൫ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜൯ ڄ Ԧ௜ߣ  ൌ Ͳ, (6) 

where ൫ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜൯ ڄ Ԧ௜ߣ  ൌ ∑ ൫ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜൯௠೔௞ୀଵ ௞ ڄ ൫ߣԦ௜൯௞ ൌ Ͳ in fact means that ൫ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜൯௞ ڄ ൫ߣԦ௜൯௞ 

for ͳ ൑ ݇ ൑ ݉௜ because both the products have to be positive. It is said that the components 

of ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜ are complementary to the corresponding components of ߣԦ௜. 
3.2.2.2 Less-or-equal constraints 

We define acceleration level less-or-equal constraint ݅ as follows. The constraint acts on two 
bodies ܣ௜ and ܤ௜, has a dimensionality ݉௜ and is specified by two ݉௜ ൈ ͸ matrices ܬ௜,஺೔ and ܬ௜,஻೔  and a right-hand-side vector Ԧܿ௜ of length ݉௜. The constraint requests that ܬ௜,஺೔ ڄ Ԧܽ஺೔ ൅ ௜,஻೔ܬ Ԧܽ஻೔ڄ ൑ Ԧܿ௜ for accelerations Ԧܽ஺೔ and Ԧܽ஻೔ . 
Analogously to the previous case, we obtain the following set of conditions on multipliers ߣԦ 
due to the acceleration level less-or-equal constraint ݅. In addition to the condition ܬ௜ ڄ Ԧܽ െԦܿ௜ ൌ ௜ܣ ڄ Ԧߣ ൅  ሬܾԦ௜ ൑ ͲሬԦ, multipliers due to constraint ݅ have to be negative and complementary 

to ߣԦ௜, ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜ ൑ ͲሬԦ ߣԦ௜ ൑ ͲሬԦ ൫ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜൯ ڄ Ԧ௜ߣ  ൌ Ͳ. (7) 

Less-or-equal constraints ݅ can trivially be converted to greater-or-equal constraints by 

negating the Jacobian blocks and the right-hand-side vector Ԧܿ௜ and so they do not have to be 

handled as a special case. 

3.2.3 Bounded equality constraints 

Let’s suppose we want to implement a one-dimensional constraint that would behave like 

an equality constraint ܬ௜ ڄ Ԧܽ ൌ Ԧܿ௜ such that the constraint would break if the magnitude ฮ ܬ௜் ฮ ڄ ቚ൫ߣԦ௜൯ଵቚ of the constraint force ܨԦ௖௜ ൌ ௜்ܬ ڄ  Ԧ௜ required to maintain the constraint exceeds aߣ

certain limit. Such a capability could, for example, be used for the implementation of various 

kinds of motors with limited power. Now, because ฮ ܬ௜் ฮ is known, limiting the force 

magnitude (in this case) is equivalent to specifying the lower and upper bound on the value 

of the multiplier ൫ߣԦ௜൯ଵ . Hence, without loss of generality we can assume the bounds on ߣԦ௜ 
are given instead. In the general case of a multi-dimensional constraint, we assume that each 

multiplier has its own bounds, independent of the values of other multipliers, so that the 

problem of solving for ߣԦ remains tractable. 

We define acceleration level bounded equality constraint ݅ as follows. The constraint acts on two 

bodies ܣ௜ and ܤ௜, has a dimensionality ݉௜ and is specified by two ݉௜ ൈ ͸ matrices ܬ௜,஺೔ and ܬ௜,஻೔ , a right-hand-side vector Ԧܿ௜ of length ݉௜ and ߣԦ௜ bounds ߣԦ௜௟௢ ൑ ͲሬԦ and ߣԦ௜௛௜ ൒ ͲሬԦ. The 

constraint requests that ൫ߣԦ௜௟௢൯௞ ൑ ൫ߣԦ௜൯௞ ൑ ൫ߣԦ௜௛௜൯௞ and implements the equality constraint ܬ௜,஺೔ ڄ Ԧܽ஺೔ ൅ ௜,஻೔ܬ ڄ Ԧܽ஻೔ ൌ Ԧܿ௜ for accelerations Ԧܽ஺೔ and Ԧܽ஻೔  subject to constraint force limits given 

by ߣԦ௜௟௢ and ߣԦ௜௛௜ . 
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We will now elaborate on what constraint force limits due to the acceleration level bounded 

equality constraint ݅ really mean and what the corresponding conditions on ߣԦ look like. 

Following up on the hypersurface interpretation of the equality constraint ܬ௜ ڄ Ԧܽ െ Ԧܿ௜ ൌ ͲሬԦ, if 
the bodies are to move off the hypersurface ݇ due to the ݇-th constraint DOF in the direction 

of the surface normal, a negative ൫ߣԦ௜൯௞ is required to cancel the acceleration. Now, if the 

value of ൫ߣԦ௜൯௞ required to fully cancel the acceleration is less than the allowed lower limit ൫ߣԦ௜௟௢൯௞, clamped ൫ߣԦ௜൯௞ ൒ ൫ߣԦ௜௟௢൯௞ would not yield a constraint force strong enough to cancel 

the prohibited acceleration and in the end ܬ௜ ڄ Ԧܽ െ Ԧܿ௜ ൐ ͲሬԦ. Similarly, if the bodies are to move 

off the hypersurface in the opposite direction, a positive ൫ߣԦ௜൯௞ is required to cancel the 

acceleration. If ൫ߣԦ௜൯௞ is clamped such that ൫ߣԦ௜൯௞ ൑ ൫ߣԦ௜௛௜൯௞ and the acceleration is not cancelled 

fully then  ܬ௜ ڄ Ԧܽ െ Ԧܿ௜ ൏ ͲሬԦ. Putting this discussion into equations and assuming ൫ߣԦ௜௟௢൯௞ ൑ Ͳ 

and ൫ߣԦ௜௛௜൯௞ ൒ Ͳ, we get ൫ߣԦ௜௟௢൯௞ ൑ ൫ߣԦ௜൯௞ ൑ ൫ߣԦ௜௛௜൯௞ ൫ߣԦ௜൯௞ ൌ ൫ߣԦ௜௟௢൯௞ ֜ ൫ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜൯௞ ൒ Ͳ ൫ߣԦ௜൯௞ ൌ ൫ߣԦ௜௛௜൯௞ ֜ ൫ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜൯௞ ൑ Ͳ ൫ߣԦ௜௟௢൯௞ ൏ ൫ߣԦ௜൯௞ ൏ ൫ߣԦ௜௟௢൯௞ ֜ ൫ܣ௜ ڄ Ԧߣ ൅ ሬܾԦ௜൯௞ ൌ Ͳ. (8) 

 

Fig. 3. Visualization of complementarity conditions on the pairs ൫ߣ௜ ,  Ԧሻ൯ due to differentߣ௜ሺݓ

kinds of one dimensional constraints ݅, where ݓ௜൫ߣԦ൯ ൌ׷ ௜ܣ ڄ Ԧߣ ൅ ܾ௜ ൌ ௜ܬ ڄ Ԧܽ െ ܿ௜. Thick lines 

indicate permissible values for the ൫ߣ௜ ,  Ԧሻ൯ pairs. As can be seen, equality constraintߣ௜ሺݓ

requests ݓ௜ሺߣԦሻ to be zero and lets ߣ௜ take an arbitrary value. Greater-or-equal constraint 

requests both ݓ௜ሺߣԦሻ and ߣ௜ to be non-negative and complementary to each other. Bounded 

equality constraint generalizes the two previous cases by introducing explicit limits ߣ௜௟௢ ൑ Ͳ 

and ߣ௜௛௜ ൒ Ͳ on the values of ߣ௜ . For improved readability, ሬሬሬԦ accents have been removed 
from one-dimensional vectors related to the constraint ݅. 

Ͳ 

Ͳ
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 ௜ߣ

Ͳ

 Ԧሻߣ௜ሺݓ

Ͳ  ௜ߣ

௜ܬ ڄ Ԧܽ ൌ ܿ௜ Equality constraint Greater-or-equal constraint 

௜ܬ   ڄ Ԧܽ ൒ ܿ௜ 

Ͳ

Ͳ  ௜ߣ

 Ԧሻߣ௜ሺݓ

 ௜௛௜ߣ ௜௟௢ߣ

௜ܬ ڄ Ԧܽ ൌ ܿ௜ Bounded equality constraint 
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Bounded equality constraints are generalization of both inequality and equality constraints. 

For example, if we set ߣԦ௜௟௢ ൌ ͲሬԦ and ߣԦ௜௛௜ ൌ ∞ሬሬሬԦ then the bounded equality constraint ݅ turns to a 
greater-or-equal constraint ݅ with the same Jacobian blocks and right-hand-side vector Ԧܿ௜. 
Similarly, by setting ߣԦ௜௟௢ ൌ െ∞ሬሬሬԦ and ߣԦ௜௛௜ ൌ ͲሬԦ, the constraint turns to a less-or-equal constraint. 

Finally, by setting ߣԦ௜௟௢ ൌ െ∞ሬሬሬԦ and ߣԦ௜௛௜ ൌ ∞ሬሬሬԦ, the constraint turns to an unbounded equality 
constraint. 

3.2.4 Reduction to LCP 

In the previous section we have discussed several constraint types and showed what 

conditions on the multipliers ߣԦ they impose. Our goal is now to solve for ߣԦ obeying the 

presented conditions so that the constraint force ܨԦ௖ ൌ ்ܬ ڄ  .Ԧ could be exerted on the systemߣ

As it turns out, the problem of solving for ߣԦ is equivalent to solving of specific kinds of linear 

complementarity problems (LCPs) for which efficient algorithms exist and so we can compute ߣԦ 
by using a LCP solver, (Smith, 2004; Vondrak, 2006; Cline, 2002). To simplify the discussion, 
we assume that every inequality and bounded equality constraint ݅ is one-dimensional, ݉௜ ൌ ͳ. As a result, we can simply write ߣ௜ instead of ൫ߣԦ௜൯ଵ, etc. 

If all the constraints are unbounded equalities, the corresponding conditions on ߣԦ are given 

by ܣ ڄ Ԧߣ ൅ ሬܾԦ ൌ ͲሬԦ which is a linear system that can be solved efficiently by standard 

factorization techniques. If all constraints are greater-or-equal constraints, we get a pure 

linear complementarity problem of the form ܣ ڄ Ԧߣ ൅ ሬܾԦ ൒ ͲሬԦ, ߣԦ ൒ ͲሬԦ, ߣԦ ڄ ൫ܣ ڄ Ԧߣ ൅ ሬܾԦ൯ ൌ ͲሬԦ, which can 

be solved by a standard LCP solver. If there are ݇ unbounded equality constraints and ܿ െ ݇ 

greater-or-equal constraints, we get a mixed linear complementarity problem ܣ௘௤ ڄ Ԧߣ ൅ ሬܾԦ௘௤ ൌͲሬԦ, ௜௡௘௤ܣ ڄ Ԧߣ ൅ ሬܾԦ௜௡௘௤ ൒ ͲሬԦ, Ԧ௜௡௘௤ߣ ൒ ͲሬԦ, Ԧ௜௡௘௤ߣ ڄ ൫ܣ௜௡௘௤ ڄ Ԧߣ ൅ ሬܾԦ௜௡௘௤൯ ൌ Ͳ, where ܣ௘௤ , ሬܾԦ௘௤ denotes the 

rows of ܣ, ሬܾԦ due to equality constraints and ܣ௜௡௘௤, ሬܾԦ௜௡௘௤ denotes the rows of ܣ, ሬܾԦ due to 

inequality constraints. Mixed LCPs can be solved by mixed LCP solvers. Finally, if there are ݇ unbounded equality constraints and ܿ െ ݇ bounded equality-constraints (including 

inequality constraints ݅ with appropriately set ߣԦ௜ limits), we get a lo-hi linear complementarity 

problem ܣ௘௤ ڄ Ԧߣ ൅ ሬܾԦ௘௤ ൌ ͲሬԦ, ௜௟௢ߣ ൑ ௜ߣ ൑ ௜௛௜ߣ , ௜ߣ ൌ ௜௟௢ߣ ֜ ௜ܣ ڄ Ԧߣ ൅ ܾ௜ ൒ Ͳ, ௜ߣ ൌ ௜௛௜ߣ ֜ ௜ܣ ڄ Ԧߣ ൅ ܾ௜ ൑Ͳ, ௜௟௢ߣ ൏ ௜ߣ ൏ ௜௛௜ߣ ֜ ௜ܣ ڄ Ԧߣ ൅ ܾ௜ ൌ Ͳ, where ݅ indexes unbounded equality and inequality 

constraints. This is the most general form that can handle all constraint forms we have 

discussed and can also be solved efficiently. 

3.3 Velocity constraints 

So far we have discussed how constraints can be implemented on the accelerations. It is 

useful, however, to specify constraints on the velocities as well. Let’s recall the example with 

the ball and the ground plane where the goal is to enforce a one-dimensional position-level 

constraint ܥ௣ሺݍԦଵ, Ԧଶሻݍ ൒ Ͳ stipulating that the ball has to stay above the ground. Now, if ܥ௣ሺݍԦଵሺݐሻ, ሻሻݐԦଶሺݍ ൌ Ͳ and ܥ௣ሶ ሺݍԦଵሺݐሻ, ሻሻݐԦଶሺݍ ൏ Ͳ at the current time ݐ (the ball strikes the ground 

plane) then ܥ௣ሺݍԦଵሺݐ ൅ Ԗሻ, ݐԦଶሺݍ ൅ Ԗሻሻ ൏ Ͳ at the time instant ݐ ൅ ߳ regardless of accelerations at 

time ݐ for a sufficiently small ߳. In order to ensure that the constraint is maintained at ݐ ൅ ߳, 

velocities at time ݐ have to change so that ܥ௣ሶ ሺݍԦଵሺݐሻ, ሻሻݐԦଶሺݍ ൒ Ͳ. This, however, is a constraint 

on the velocity. 
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3.3.1 Impulsive dynamics 

We will now outline the concept of impulsive forces and first-order rigid body dynamics. 

With regular forces, the effects of forces on positions and orientations of rigid bodies are 

determined by second-order (Newtonian) dynamics in which velocities change through the 

integration of forces while positions change through the integration of velocities. With 

impulsive forces, the effects of forces on positions and orientations are determined by first-

order (impulsive) dynamics in which velocities change directly through the application of 

impulsive forces and positions change through the integration of velocities. 

We postulate impulsive force ܬԦி as a force with “units of momentum”. If ሬܲԦ and ܮሬԦ are the linear 

and angular momentums of a rigid body and  ܬԦி is applied to the body at the world space 

position ݎԦ, then the linear momentum ሬܲԦ changes by the value Δ ሬܲԦ ൌ  Ԧி and the angularܬ

momentum ܮሬԦ changes by the value ΔܮሬԦ ൌ Ԧఛܬ Ԧఛ, whereܬ ൌ ሺݎԦ െ Ԧሻݔ ൈ  Ԧி is impulsive torque due toܬ

the impulsive force ܬԦி. Impulsive forces and torques can be seen as “ordinary” forces and 
torques that directly change the body’s linear and angular momentums, instead of affecting 
their time derivatives. 
Similarly to the second-order dynamics, we couple linear and corresponding  angular 

quantities to generalized quantities. That way, we obtain generalized momentum ܨԦ௜௠௣௧௢௧௔௟ ൌሺ ሬܲԦ, Ԧ௜௠௣ܨ ሬԦሻ and generalized impulsive force (impulse)ܮ ൌ ሺܬԦி ,  is the mass matrix of ܯ Ԧఛሻ. Then ifܬ

the rigid body and ݒԦ is the body’s generalized velocity, we immediately get ܯ ڄ Ԧݒ ൌ  Ԧ௜௠௣௧௢௧௔௟ܨ
from the definition of the linear and angular momentum. Moreover, our momentum update 
rules state that the change ΔݒԦ of generalized velocity ݒԦ due to the application of the 

generalized impulse ܨԦ௜௠௣ equals ΔݒԦ ൌ ଵିܯ ڄ  Ԧ௜௠௣. Therefore the first-order dynamics relatingܨ

velocities ݒԦ to impulses ܨԦ௜௠௣ is given by  

ܯ  ڄ Ԧݒ ൌ  Ԧ௜௠௣  (9)ܨ

and ܨԦ௜௠௣௧௢௧௔௟ can be seen as a generalized total  external impulse acting on the body that consists 

of the only term – the inertial term ሺ ሬܲԦ,  ሬԦሻ. This directly compares to the case of second-orderܮ

dynamics that relates accelerations Ԧܽ to forces ܨԦ by ܯ ڄ Ԧܽ ൌ  .Ԧܨ
If we have a set of ݊ rigid bodies with mass matrices ܯଵ, … , ,Ԧଵݒ ௡, generalized velocitiesܯ … , ,Ԧ௜௠௣௧௢௧௔௟൯ଵܨԦ௡ and total external impulses ൫ݒ … , ൫ܨԦ௜௠௣௧௢௧௔௟൯௡ then the first-order dynamics of 

the system is given by ܯ ڄ Ԧݒ ൌ ,ଵܯ is a mass matrix of the system made of ܯ Ԧ௜௠௣௧௢௧௔௟, whereܨ … , Ԧݒ ,௡ܯ ൌ ሺݒԦଵ, … , Ԧ௜௠௣௧௢௧௔௟ܨ Ԧ௡ሻ andݒ ൌ ቀ൫ܨԦ௜௠௣௧௢௧௔௟൯ଵ, … , ൫ܨԦ௜௠௣௧௢௧௔௟൯௡ቁ. Analogously to the 

acceleration case, we call ݒԦ the velocity of the system and ܨԦ௜௠௣௧௢௧௔௟ the total external impulse 

exerted on the system (system momentum). 

3.3.2 Constraints 

We can now transfer everything we know about acceleration-level constraints, defined with 

respect to accelerations and forces, to the realm of velocity-level constraints, defined with 

respect to velocities and impulsive forces. There is no need to do any derivations because 

acceleration-level formulation of rigid body dynamics exactly corresponds to the velocity-

level formulation of the impulsive dynamics.  The only differences are due to the fact that 

we will now work with system velocities ݒԦ, impulsive constraint forces ܨԦ௜௠௣௖  and 
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momentums ܨԦ௜௠௣௧௢௧௔௟ instead of accelerations Ԧܽ, constraint forces ܨԦ௖ and total external forces ܨԦ௧௢௧௔௟. In consequence, the same algorithms can be used to implement velocity constraints. 

We define velocity level constraint ݅ as follows. The constraint acts on two bodies ܣ௜ and ܤ௜, 
has a dimensionality ݉௜ and is specified by two ݉௜ ൈ ͸ matrices ܬ௜,஺೔ and ܬ௜,஻೔and a right-

hand-side vector ሬ݇Ԧ௜ of length ݉௜. The constraint requests either ܬ௜,஺೔ ڄ Ԧ஺೔ݒ ൅ ௜,஻೔ܬ ڄ Ԧ஻೔ݒ ൌ ሬ݇Ԧ௜, ܬ௜,஺೔ Ԧ஺೔ݒڄ ൅ ௜,஻೔ܬ ڄ Ԧ஻೔ݒ ൑ ሬ݇Ԧ௜ or ܬ௜,஺೔ ڄ Ԧ஺೔ݒ ൅ ௜,஻೔ܬ ڄ Ԧ஻೔ݒ ൒ ሬ݇Ԧ௜ and is implemented by exerting a constraint 

impulse ൫ܨԦ௖௜൯௜௠௣ ൌ ௜்ܬ ڄ  Ԧ௜. In addition, if boundsߣ Ԧ௜ determined by the values of multipliersߣ

on the valid multiplier values ߣԦ௜௟௢ ൑ ͲሬԦ and ߣԦ௜௛௜ ൒ ͲሬԦ are provided, then the constraint describes 

a bounded equality constraint ݅ that requests ൫ߣԦ௜௟௢൯௞ ൑ ൫ߣԦ௜൯௞ ൑ ൫ߣԦ௜௛௜൯௞ and implements the 

equality constraint ܬ௜,஺೔ ڄ Ԧ஺೔ݒ ൅ ௜,஻೔ܬ ڄ Ԧ஻೔ݒ ൌ ሬ݇Ԧ௜ for velocities ݒԦ஺೔ and ݒԦ஻೔  subject to constraint 

impulse limits given by ߣԦ௜௟௢ and ߣԦ௜௛௜ . Multipliers ߣԦ can be computed by solving the same LCP 

problems like before. If there are ܿ constraints, we will get ܣ ൌ ܬ ڄ ଵିܯ ڄ and ሬܾԦ ்ܬ ൌ ܬ ڄ ଵିܯ Ԧ௜௠௣௧௢௧௔௟ܨڄ െ ሬ݇Ԧ, where ሬ݇Ԧ ൌ ൫ሬ݇Ԧଵ, … , ሬ݇Ԧ௖൯. 

3.4 Position constraints 

Motion control constraints are most often specified on the position level because it is the 
natural way of expressing desired motion. In the earlier section, we have already discussed 
how position level constraints can be implemented either on the acceleration or velocity 
level, but this time, we will do it more thoroughly and will also show how prior constraint 
errors due to numerical inaccuracies could be reduced during simulation.  
We never enforce constraints directly on the position level. Position level enforcement 
would require use of custom equations of motion specific to the set of constraints. As a 
result equations would have to change each time the constraint set is updated. For the rest 
of the section, we will assume we have ݊ rigid bodies and ܿ position-level constraints. 
We define position level constraint ݅ as follows. The constraint acts on two bodies ܣ௜ and ܤ௜, 
has a dimensionality ݉௜ and is specified by a function ܥԦ௣௜ ൫ݍԦ஺೔ , Ԧ஻೔൯ݍ א  ௠೔ that is differentiableࡾ
with respect to time so that its velocity level and acceleration level formulations (consistent 
with our prior definitions) can be obtained by differentiation. Position level equality constraint ݅ requests that ܥԦ௣௜ ൫ݍԦ஺೔ , Ԧ஻೔ݍ ൯ ൌ ͲሬԦ for generalized positions ݍԦ஺೔ and ݍԦ஻೔  and the value of ܥԦ௣௜ ൫ݍԦ஺೔ ,  Ԧ஻೔൯ can intuitively be thought of as a measurement of the position error for bodies atݍ
the position configuration ሺݍԦ஺೔ , Ԧ௣௜ܥ Ԧ஻೔ሻ. Position level greater-or-equal constraint ݅ requests thatݍ ൫ݍԦ஺೔ , Ԧ஻೔൯ݍ ൒ ͲሬԦ and position level less-or-equal constraint ݅ requests that ܥԦ௣௜ ൫ݍԦ஺೔ , Ԧ஻೔൯ݍ ൑ ͲሬԦ. 
3.4.1 Acceleration or velocity level 

We use constraint forces to implement position level constraints in an incremental way. We 
start from an initial state that is consistent with the constraint formulation (such that 
positions and velocities are valid with respect to the position level and velocity level 
formulations of the constraints) and then apply constraint forces to ensure that the velocity 
level and position level constraints remain maintained. Alternatively, we start from a state 
that is consistent with the position level formulations and then apply constraint impulses to 
ensure that the position level constraints remain maintained.  
Please note that whenever an impulse is applied to a body, its velocity changes. In 
consequence, conditions that have to be met so that a particular constraint could be 
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implemented on the acceleration level need no longer be valid after the impulse is applied and 
so it cannot be reliably determined in advance which constraints can be implemented on the 
acceleration level. To address this issue, we implement all constraints on the velocity level 
whenever there is at least one position constraint that has to be implemented on the velocity level. 

3.4.2 Equality constraints with stabilization 

Consider the position level equality constraint ܥԦ௣௜ ൫ݍԦ஺೔ , Ԧ஻೔൯ݍ ൌ ͲሬԦ. By differentiating ܥԦ௣௜ ൫ݍԦ஺೔ , Ԧ஻೔൯ݍ ൌ ͲሬԦ with respect to time, we get a corresponding velocity level formulation of 

the position constraint in the form of ܥԦ௩௜൫ݒԦ஺೔ , Ԧ஻೔൯ݒ ൌ ͲሬԦ, where ܥԦ௩௜൫ݒԦ஺೔ , Ԧ஻೔൯ݒ ൌ డడ௧ Ԧ௣௜ܥ ൫ݍԦ஺೔ , Ԧ஻೔൯ݍ ൌܬ௜,஺೔ ڄ Ԧ஺೔ݒ ൅ ௜,஻೔ܬ ڄ Ԧ஻೔ݒ . By differentiating this velocity constraint, we get a corresponding 

acceleration level formulation ܥԦ௔௜ ൫ Ԧܽ஺೔ , Ԧܽ஻೔ ൯ ൌ ͲሬԦ, where ܥԦ௔௜ ൫ Ԧܽ஺೔ , Ԧܽ஻೔൯ ൌ డడ௧ Ԧ஺೔ݒԦ௩௜൫ܥ , Ԧ஻೔൯ݒ ൌ ௜,஺೔ܬ Ԧܽ஺೔ڄ ൅ ௜,஻೔ܬ ڄ Ԧܽ஻೔ െ Ԧܿ௜ and Ԧܿ௜ ൌ െܬሶ௜,஺೔ ڄ Ԧ஺೔ݒ െ ሶ௜,஻೔ܬ ڄ Ԧ஻೔ݒ . The position level constraint ݅ ܥԦ௣௜ ൌ ͲሬԦ can 

thus be implemented incrementally either (1) on the acceleration level, by starting from a 

state where ܥԦ௣௜ ൌ Ԧሶ௣௜ܥ ൌ ͲሬԦ and applying constraint forces so that ܥԦሷ௣௜ ൌ ͲሬԦ or (2) on the velocity 

level, by starting from a state where ܥԦ௣௜ ൌ ͲሬԦ and applying constraint impulses so that ܥԦሶ௣௜ ൌ ͲሬԦ. 
In the first case, constraint forces are applied under the assumption that ܥԦ௣௜ ൌ Ԧሶ௣௜ܥ ൌ ͲሬԦ, while 

in the second case, constraint impulses are applied under the assumption that ܥԦ௣௜ ൌ ͲሬԦ. In 

practice, however, these assumptions often do not hold for various pragmatic reasons. For 
example, the numerical solver that integrates the equations of motion incurs an integration 
error or constraint forces are computed with an insufficient precision. 
Let’s assume we implement the position level constraint ݅ on the velocity level. If the 

constraint is currently broken, that is ܥԦ௣௜ ് ͲሬԦ, we want to generate a constraint impulse so 

that the constraint error ܥԦ௣௜   will be driven towards a zero vector. This is called constraint 

stabilization. Fortunately, simple stabilization can be implemented by following a procedure 

suggested in (Cline, 2002). Instead of requiring that ܥԦሶ௣௜ ൌ Ͳ, we can require that  

Ԧሶ௣௜ܥ  ൌ െܥԦ௣௜ ڄ  (10) , ߙ

where ߙ is a small positive value (dependent on the integration step size) that determines 
the speed with which the constraint is stabilized. Then, if ݐ is the current time, we have ܥԦ௣௜ ሺݐ ൅ Δݐሻ ൎ Ԧ௣௜ܥ ሺݐሻ ൅ Δݐ ڄ Ԧሶ௣௜ܥ ሺݐሻ ൌ Ԧ௣௜ܥ ሺݐሻ ڄ ሺͳ െ Δݐ ڄ  ሻ and so we can reduce the position errorߙ

by simply biasing the request on the desired velocity. 
Analogously to the previous case, if we implement the position level constraint ݅ on the 

acceleration level, we need to reduce both the position error ܥԦ௣௜  as well as velocity error ܥԦሶ௣௜ . 

That could be done by biasing the request on the desired acceleration ܥԦሷ௣௜ . Instead of 

requiring that ܥԦሷ௣௜ ൌ ͲሬԦ we can require  

Ԧሷ௣௜ܥ  ൌ െܥԦ௣௜ ڄ ߙ െ Ԧሶ௣௜ܥ ڄ  (11)  ,ߚ

where ߙ and ߚ are positive constants. Because ܥԦሶ௣௜ ൌ ௜ܬ ڄ Ԧሷ௣௜ܥ Ԧ we getݒ ൌ െܥԦ௣௜ ڄ ߙ െ ௜ܬ ڄ Ԧݒ ڄ  .ߚ

Plugging these equations into our constraint definitions, we can therefore implement the 
position level equality constraint ݅ with stabilization by submitting either the velocity level 
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