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Preface

Biomedical imaging is becoming an indispensable branch within bioengineering. This research 
field has recent expanded due to the requirement of high-level medical diagnostics and rapid 
development of interdisciplinary modern technologies. This book is designed to present the 
most recent advances in instrumentation, methods, and image processing as well as clinical 
applications in important areas of biomedical imaging. This book provides broad coverage of 
the field of biomedical imaging, with particular attention to an engineering viewpoint. 

Chapter one introduces a 3D volumetric image registration technique. The foundations of 
the volumetric image visualization, classification and registration are discussed in detail. 
Although this highly accurate registration technique is established from three phantom 
experiments (CT, MRI and PET/CT), it applies to all imaging modalities. Optical imaging has 
recently experienced explosive growth due to the high resolution, noninvasive or minimally 
invasive nature and cost-effectiveness of optical coherence modalities in medical diagnostics 
and therapy. Chapter two demonstrates a fiber catheter-based complex swept-source optical 
coherence tomography system. Swept-source, quadrature interferometer, and fiber probes 
used in optical coherence tomography system are described in details. The results indicate that 
optical coherence tomography is a potential imaging tool for in vivo and real-time diagnosis, 
visualization and treatment monitoring in clinic environments. Brain computer interfaces have 
attracted great interest in the last decade. Chapter three introduces brain imaging and machine 
learning for brain computer interface. Non-invasive approaches for brain computer interface 
are the main focus. Several techniques have been proposed to measure relevant features from 
EEG or MRI signals and to decode the brain targets from those features. Such techniques 
are reviewed in the chapter with a focus on a specific approach. The basic idea is to make 
the comparison between a BCI system and the use of brain imaging in medical applications. 
Texture analysis methods are useful for discriminating and studying both distinct and subtle 
textures in multi-modality medical images. In chapter four, texture analysis is presented as 
a useful computational method for discriminating between pathologically different regions 
on medical images. This is particularly important given that biomedical image data with near 
isotropic resolution is becoming more common in clinical environments. 



VI

The goal of this book is to provide a wide-ranging forum in the biomedical imaging field 
that integrates interdisciplinary research and development of interest to scientists, engineers, 
teachers, students, and clinical providers. This book is suitable as both a professional reference 
and as a text for a one-semester course for biomedical engineers or medical technology 
students. 

Youxin Mao
Institute for Microstructural Science,

National Research Council Canada



VII

Contents

Preface	 V

1.	 Volumetric Image Registration of Multi-modality Images of CT, MRI and PET	 001
Guang Li and Robert W. Miller

2.	 Full Range Swept-Source Optical Coherence Tomography with Ultra Small 	
Fiber Probes for Biomedical Imaging	 027
Youxin Mao, Costel Flueraru and Shoude Chang

3.	 Brain Imaging and Machine Learning for Brain-Computer Interface	 057
Maha Khachab, Chafic Mokbel, Salim Kaakour, Nicolas Saliba and Gérard Chollet

4.	 Texture Analysis Methods for Medical Image Characterisation	 075
William Henry Nailon



VIII



Volumetric Image Registration of Multi-modality Images of CT, MRI and PET 1

Volumetric Image Registration of Multi-modality Images of CT, MRI and 
PET

Guang Li and Robert W. Miller

X 
 

Volumetric Image Registration of  
Multi-modality Images of CT, MRI and PET 

 
Guang Li and Robert W. Miller 

National Cancer Institute, National Institutes of Health 
Bethesda, Maryland,USA 

 
1. Introduction    
 

1.1 Biomedical Imaging of Multimodality 
Three-dimensional (3D) biomedical imaging starts from computed tomography (CT) in 
1960’s-1970’s (Cormack, 1963, Hounsfield, 1973) followed by magnetic resonance imaging 
(MRI) in 1970’s (Lauterbur, 1973, Garroway et al, 1974, Mansfield & Maudsley, 1977). These 
anatomical imaging techniques are based on physical features of a patient’s anatomy, such 
as linear attenuation coefficient or electromagnetic interaction and relaxation. 3D biological 
imaging (molecular imaging or functional imaging), such as positron emission tomography 
(PET) and single photon emission computed tomography (SPECT), was also developed in 
mid 1970’s (Ter-Pogossian, et al, 1975, Phelps, et al, 1975). They detect biological features 
using a molecular probe, labelled with either a positron emitter or a gamma emitter, to 
target a molecular, cellular or physiological event, process or product. So, the x-ray/γ-ray 
intensity from a particular anatomical site is directly related to the concentration of the 
radio-labelled molecular marker. Therefore, a biological event will be imaged in 3D space. 
Since the concept of hybrid PET/CT scanner was introduced (Beyer, et al, 2000), the co-
registration of biological image with anatomical image offers both biological and anatomical 
information in space, assuming that there is no patient’s motion between and during the 
two image acquisitions.  Other combined scanners, such as SPECT/CT and PET/MRI, have 
also been developed (Cho, et al, 2007, Bybel, et al, 2008, Chowdhury & Scarsbrook, 2008). 
Registration of biological and anatomical images at acquisition or post acquisition provides 
multi-dimensional information on patient’s disease stage (Ling, et al, 2000), facilitating 
lesion identification for diagnosis and target delineation for treatment. 
 
In radiological clinic, although a particular imaging modality may be preferable to diagnose 
a particular disease, multimodality imaging has been increasingly employed for early 
diagnosing malignant lesion (Osman, et al, 2003), coronary artery diseases (Elhendy, et al 
2002), and other diseases. Use of biological imaging enhances the success rate of correct 
diagnosis, which is necessary for early, effective treatment and ultimate cure. 
 
In radiation therapy clinic, multi-modality imaging is increasingly employed to assist target 
delineation and localization, aiming to have a better local control of cancer (Nestle, et al, 
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2009). Radiation therapy (RT) contains three basic components: treatment simulation, 
treatment planning and treatment delivery (Song & Li, 2008). Simulation is to imaging a 
patient at treatment condition for planning, based on which the treatment is delivered. In 
image-based planning, multimodality images, including CT, MRI and PET, can be registered 
and used to define the target volume and location within the anatomy (Schad et al, 1987, 
Chen & Pelizzari, 1989). In image-guided delivery, on-site imaging which provides patient’s 
positioning image, is used to register to the planning CT image for accurate patient setup, so 
that the target is treated as planned (Jaffray, et al, 2007). 
 
Therefore, in both diagnostic and therapeutic imaging, image registration is critical for a 
successful clinical application. Beyond the 3D space, 4D (3D+time) biomedical imaging has 
become an emerging clinical research field, and some procedures have been adopted in the 
clinic, such as 4DCT (Li et al, 2008a). Motion is inevitably present during imaging as well as 
therapeutic processes, including respiratory, cardiac, digestive and muscular motions, 
causing image blurring and target relocation. 4D medical imaging aims to minimize the 
motion artefact and 4DRT aims to track and compensate for the target motion. Facing the 
challenge of patient’s motion and change along the time, deformable image registration has 
been intensively studied (Hill, et al, 2001, Pluim et al, 2003, Li et al, 2008b). Although it 
remains as challenging topic, it will be only discussed briefly where it is needed, as it is not 
the main focus of this chapter. 

 
1.2 Manual Image Registration 
Manual or interactive image registration is guided by visual indication of image alignment. 
The conventional visual representation of an 3D images is 2D-based, three orthogonal 
planar views of cross-section of the volumetric image (West, et al, 1997, Fitzpatrick, et al, 
1998). Here the discussion will be focused on anatomy-based image registration, rather than 
fiducial-based (such as superficial or implanted markers) or coordinate-based (such as 
combined PET/CT system). All clinical treatment planning systems utilize this visual 
representation for checking and adjusting the alignment of two images. In details, there are 
several means to achieve the visual alignment verification: (1) the chess-box display of two 
images in alternate boxes; (2) the simultaneous display of two mono-coloured images; and 
(3) the superimposed display of the two images with an adjustable weighting factor. Fig. 1 
illustrates the first two of the three basic visualization methods. 
 
The 2D visual-based fusion technique has been developed, validated and adopted for 
biomedical research as well as clinical practice (Hibbard, et al, 1987, Chen, et al, 1987, 
Hibbard & Hawkins, 1988, Pelizzari, et al, 1989, Toga & Banerjee, 1993, Maintz & Viergever, 
1998, Hill, et al, 2001). Throughout the past three decades, this technique has evolved and 
become a well developed tool to align 3D images in the clinic. Multi-modality image 
registration is required (Schad et al, 1987, Pelizzari, et al, 1989) as more medical imaging is 
available to the clinic. However, reports have shown that this well established technique 
may suffer from (1) large intra- and inter-observer variability; (2) the dependency of user’s 
cognitive ability; (3) limited precision by the resolution of imaging and image display; and 
(4) time consuming in verifying and adjusting alignment in three series of planar views in 
three orthogonal directions (Fitzpatrick, et al, 1998, Vaarkamp, 2001). These findings have 
become a concern whether this 2D visual-based fusion technique with an accuracy of 1-3 

 

 

mm and time requirement of 15-20 minutes is sufficiently accurate and fast to meet the 
clinical challenges of increasing utilization of multi-modality images in planning, increasing 
adoption of image-guided delivery, and increasing throughput of patient treatments.  
 

 
Fig. 1. Illustration of two common means of image alignment based on 2D planar views 
(Only one of the axial slices is shown, and the sagittal and coronal series are not shown). 
 
The 3D visual representation or volumetric visualization (Udupa, 1999, Schroeder, et al, 
2004) has recently been applied to evaluate the volumetric alignment of two or more 3D 
images (Xie, et al, 2004, Li, et al, 2005, 2007, 2008b and 2008c). This 3D volumetric image 
registration (3DVIR) technique aims to solve most of the problems associated with the 
conventional 2D fusion technique by providing a fundamentally different, volumetric visual 
representation of multimodality images. This volumetric technique has been successfully 
designed, developed and validated, while it is still relatively new to the medical field and 
has not been widely adopted as an alternative (superior) to the conventional 2D visual 
fusion technique. Two of the major obstacles for the limited clinical applications are that (1) 
from 2D to 3D visualization, the clinical practitioners have to be retrained to adapt 
themselves to this new technique, and (2) this technique has not yet been commercially 
available to the clinic. 

 
1.3 Automatic Image Registration 
Automatic image registration can improve the efficiency and accuracy of the visual-based 
manual fusion technique. There are three major components in any automatic image 
registration, including (1) registration criterion; (2) transformation and interpolation; and (3) 
optimization. These three components are independent of one another, so that they can be 
freely recombined for an optimal outcome in a particular clinical application. Here again, 
the discussion will focus on anatomy-based rigid image registration, rather than fiducial-
based or coordinate-based registration. 
 
Before mutual information criterion (negative cost function) was developed in 1995 (Viola & 
Wells, 1995), other algorithms were utilized, such as Chamfer surface matching criterion 
(Borgefors, 1988, van Herk & Kooy, 1994) or voxel intensity similarity criterion (Venot, et al, 
1984). Mutual information is fundamentally derived from information theory and has been 



Volumetric Image Registration of Multi-modality Images of CT, MRI and PET 3 

 

2009). Radiation therapy (RT) contains three basic components: treatment simulation, 
treatment planning and treatment delivery (Song & Li, 2008). Simulation is to imaging a 
patient at treatment condition for planning, based on which the treatment is delivered. In 
image-based planning, multimodality images, including CT, MRI and PET, can be registered 
and used to define the target volume and location within the anatomy (Schad et al, 1987, 
Chen & Pelizzari, 1989). In image-guided delivery, on-site imaging which provides patient’s 
positioning image, is used to register to the planning CT image for accurate patient setup, so 
that the target is treated as planned (Jaffray, et al, 2007). 
 
Therefore, in both diagnostic and therapeutic imaging, image registration is critical for a 
successful clinical application. Beyond the 3D space, 4D (3D+time) biomedical imaging has 
become an emerging clinical research field, and some procedures have been adopted in the 
clinic, such as 4DCT (Li et al, 2008a). Motion is inevitably present during imaging as well as 
therapeutic processes, including respiratory, cardiac, digestive and muscular motions, 
causing image blurring and target relocation. 4D medical imaging aims to minimize the 
motion artefact and 4DRT aims to track and compensate for the target motion. Facing the 
challenge of patient’s motion and change along the time, deformable image registration has 
been intensively studied (Hill, et al, 2001, Pluim et al, 2003, Li et al, 2008b). Although it 
remains as challenging topic, it will be only discussed briefly where it is needed, as it is not 
the main focus of this chapter. 

 
1.2 Manual Image Registration 
Manual or interactive image registration is guided by visual indication of image alignment. 
The conventional visual representation of an 3D images is 2D-based, three orthogonal 
planar views of cross-section of the volumetric image (West, et al, 1997, Fitzpatrick, et al, 
1998). Here the discussion will be focused on anatomy-based image registration, rather than 
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(3) the superimposed display of the two images with an adjustable weighting factor. Fig. 1 
illustrates the first two of the three basic visualization methods. 
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may suffer from (1) large intra- and inter-observer variability; (2) the dependency of user’s 
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(4) time consuming in verifying and adjusting alignment in three series of planar views in 
three orthogonal directions (Fitzpatrick, et al, 1998, Vaarkamp, 2001). These findings have 
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has not been widely adopted as an alternative (superior) to the conventional 2D visual 
fusion technique. Two of the major obstacles for the limited clinical applications are that (1) 
from 2D to 3D visualization, the clinical practitioners have to be retrained to adapt 
themselves to this new technique, and (2) this technique has not yet been commercially 
available to the clinic. 

 
1.3 Automatic Image Registration 
Automatic image registration can improve the efficiency and accuracy of the visual-based 
manual fusion technique. There are three major components in any automatic image 
registration, including (1) registration criterion; (2) transformation and interpolation; and (3) 
optimization. These three components are independent of one another, so that they can be 
freely recombined for an optimal outcome in a particular clinical application. Here again, 
the discussion will focus on anatomy-based rigid image registration, rather than fiducial-
based or coordinate-based registration. 
 
Before mutual information criterion (negative cost function) was developed in 1995 (Viola & 
Wells, 1995), other algorithms were utilized, such as Chamfer surface matching criterion 
(Borgefors, 1988, van Herk & Kooy, 1994) or voxel intensity similarity criterion (Venot, et al, 
1984). Mutual information is fundamentally derived from information theory and has been 
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extensively discussed in the literature (Hill, et al, 2001, Pluim, et al, 2003). It is worthwhile to 
mention that among existing criteria the common features in two different modality images 
are best described by the mutual information, which can serve as the registration cost 
function for maximization to achieve multi-modality image registration. 
 
The transformation and interpolation are mathematical operations of the images. For rigid 
image registration, only six degrees of freedom (three rotational and three translational) are 
in the transformation and the transformed voxels are assigned through interpolation (linear, 
nearest neighbour, or Spline). For deformable image registration, however, the number of 
degree of freedom is dramatically increased, since all voxels are allowed to move (deform) 
independently and therefore the number of variables would be up to three times of the total 
number of voxels in an image. As a consequence, the performance of deformable image 
registration becomes one of the bottlenecks, despite that several simplified algorithms have 
been studied to address this challenging problem (Pluim et al, 2003, Li et al, 2008a & 2008b). 
 
The optimization process is to minimize (or maximize) the cost function (or to refine the 
registration criterion) until a pre-determined threshold is met. There are many established 
algorithms available, including Gradient descent, Simplex, Genetics, and Simulated 
Annealing (Kirkpatrick et al, 1983, Goldberg et al, 1989, Snyman, 2005). The performance of 
these algorithms is evaluated based on their ability and speed to find a global minimum (or 
maximum), avoiding local traps, which will lead to a faulty result. Therefore, any automatic 
image registration must be verified visually to ensure a correct or acceptable result. 
 
Image registration based on anatomic features has a fundamental assumption, which is the 
identical underlying anatomy in different imaging modalities. In other words, motion and 
deformation of the anatomy between scans will post uncertainty to rigid image registration. 
For rigid anatomy, such as head, the accuracy of the automatic registration based on 
maximization of mutual information (MMI) can reach sub-mm scale. Clinical images of a 
patient often contain anatomical variations, resulting in sub-optimal registration results, 
which must be visually verified and adjusted to a clinically accepted level. Manual 
adjustment is mostly based on the 2D fusion technique, together with anatomical and 
physiological knowledge. Therefore this process inherits the drawbacks of the 2D fusion 
technique and degrades the accuracy of automatic registration. 

 
1.4 Hybrid Image Registration with Segmentation and Visualization 
Anatomy-based image registration can be further  categorized as (1) using all voxels within 
the field of view (the anatomy and surrounding objects), such as MMI and greyscale 
similarity, and (2) using selected anatomical landmarks, such as Chamfer surface (van Herk 
& Kooy 1994) and manual registration (Fitzpatrick, et al, 1998, Vaarkamp, 2001, Li, et al, 
2005 & 2008c). In most medical images, some anatomies are more reliable to serve as 
landmarks than others, because of anatomical rigidity, less motion artefacts, and/or 
sufficient image contrast. Therefore, evenly utilizing the entire anatomy, including medical 
devices present in the images, is good for automation, but may not be optimal for achieving 
the most accurate and reliable result. In contrast, a feature-based image registration with full 
or semi automation is sometimes preferable, especially for clinical cases with high degree of 

 

 

difficulty or with high accuracy requirement. We have found that pairing automatic MMI 
registration and the 3DVIR serves the best in terms of registration speed and outcome. 
The advantage of hybridized image registration is that it will take the advantage of multiple 
image processing techniques. Image segmentation/classification can extract more reliable 
features from the original image to enhance image registration with the more informative 
features. Image (volumetric) visualization can enhance image registration, if a classified 
reliable anatomy is visualized and utilized as the registration landmark. Therefore, hybrid 
image registration remains a focus of clinical research (Li, et al, 2008b). Although feature 
extraction is often application specific and few algorithms can be employed across the 
spectrum of all imaging modalities, hybrid image registration, such as the 3DVIR, has 
shown its promise to resolve particular clinical problems that require high accuracy. 

 
1.5 Visual Verification of Registration 
Although automatic rigid image registration using mutual information has been widely 
accepted in radiotherapy clinic, the necessity of visual verification of the result prior to 
clinical use will never change. Several causes for a sub-optimal automatic registration result 
include (1) changes in patient’s anatomy between scans; (2) incomplete or insufficient 
anatomy, especially in biological images; (3) poor image quality, and (4) incorrect (local 
traps) or insensitive (flat surface) registration outcomes. Visual verification and adjustment 
allow user to check and correct any misalignment in the auto-registered images. 
 
As discussed above, the only viable, visual method in the current clinic is the 2D-based 
fusion technique, which possesses many drawbacks, including observer dependency, error 
prone and time consuming (Vaarkamp, 2001, Li, et al, 2005). Therefore, no matter how 
accurate an automatic registration result would be, once it is adjusted with the manual 
fusion tool, the uncertainty of the result will fall back to that of the manual registration (±1-3 
mm). Thereby, the mismatch of accuracy between the automatic and manual registration 
will diminish the accuracy advantage of the automatic registration. In other words, the gain 
in reliability via visual verification and adjustment may sacrifice the accuracy. 
 

 
Fig. 2. Colour homogeneity/heterogeneity of two overlaid, identical images (red and green) 
with misalignment of 0.0, 0.2, 0.5 and 1.0 voxel (mm) from left to right using the 3DVIR. The 
“elevation contour pattern” is due to limited imaging resolution and should be ignored. 
 
Recently, reports have shown that the 3DVIR technique is superior to the conventional 2D 
visual fusion method, in terms of improved registration performance as well as high 
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extensively discussed in the literature (Hill, et al, 2001, Pluim, et al, 2003). It is worthwhile to 
mention that among existing criteria the common features in two different modality images 
are best described by the mutual information, which can serve as the registration cost 
function for maximization to achieve multi-modality image registration. 
 
The transformation and interpolation are mathematical operations of the images. For rigid 
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For rigid anatomy, such as head, the accuracy of the automatic registration based on 
maximization of mutual information (MMI) can reach sub-mm scale. Clinical images of a 
patient often contain anatomical variations, resulting in sub-optimal registration results, 
which must be visually verified and adjusted to a clinically accepted level. Manual 
adjustment is mostly based on the 2D fusion technique, together with anatomical and 
physiological knowledge. Therefore this process inherits the drawbacks of the 2D fusion 
technique and degrades the accuracy of automatic registration. 
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accuracy (±0.1 mm) that matches or exceeds that of automatic registration (Li, et al, 2008c). 
Therefore, combining an automatic registration with the 3DVIR technique seems a desirable 
alternative to overcome the limitations of the 2D fusion method, providing a solution for 
registration verification with preserved or even enhanced accuracy, as shown in Fig. 2. 

 
2. 3D Volumetric Image Registration (3DVIR) 
 

2.1 Volumetric Image Visualization and Classification 
Volumetric image visualization is an advanced image rendering technique, which generally 
offers two different approaches: (1) object-order volume rendering and (2) image-order 
volume rendering (Schroeder et al, 2004). Based on the camera (view point of an observer) 
settings, the former renders in the order of voxels stored while the latter is based on ray 
casting, which is employed in the 3DVIR technique.  
 
Ray casting determines the value of each pixel in the image plane by passing a ray from the 
current camera view through the pixel into the scene, or the image volume in this case. An 
array of parallel rays is used to cover the entire image plane, as shown in Fig. 3. Along each 
ray, all encountered voxels will contribute to the appearance of the pixel through colour 
blending until the accumulated transparency (alpha, or A) becomes unity. Here an 
advanced voxel format is employed with four components (RGBA), representing red, green, 
blue, and alpha. The colour blending of the pixel can follow any mathematical formula. In 
the 3DVIR technique, however, the following equations are used to mimic the physical 
appearance of an image volume with controllable transparency: 
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where the superscripts i and i+1 represent the two consecutive steps along the ray path and 
the subscript represents accumulative values, which are the blended RGBA values for the 
pixels up to the steps i or i+1. For any voxel with Ai = 0 (totally transparent), it does not 
contribute to the pixel. For any voxel with Ai = 1 (totally opaque) or AiAccum = 1 (becoming 
opaque after step i), all voxels afterward along the ray are invisible as they no longer 
contribute to the blended pixel in the image plane.  
 
Four lookup tables (LUTs) over the image histogram are utilized to control the voxel RGBA 
value based on voxel greyscale. The transparency A-LUT in the histogram can be used for 
image classification, which relies on large greyscale gradient at interface of an anatomy, as 
shown in Fig. 4. Mono-coloured image can also be created using the RGB LUT(s), such as a 
primary colour (e.g., red: R; G=B=0), a secondary colour (e.g., yellow: R=G; B=0), or a 
tertiary colour (e.g., white: R=G=B). These pseudo-colour representations of the volumetric 
images enable visual-based image alignment using volumetric anatomical landmarks. In 

 

 

practice, we recommend to use the three primary colours (RGB), so that the origin of a voxel is 
instantly identifiable without interference from synthesized secondary colours. The white 
colour should be used for the 4th image, which can be identified by its colour appearance and 
by toggling on and off this image, since white can also result from overlay of the other three 
images (RGB). Up to four volumetric images can be rendered simultaneously via the ray 
casting and they can be individually turned on or off as desired. 
 

 
Fig. 3. Illustration of ray casting and RGBA blending for volumetric image rendering. (taken 
from Li, et al, JACMP, 2008c) 
 

 
Fig. 4. Illustration of image classification using the transparency lookup table, which is the 
sophisticated form of window-level function. The skin (red) and bone (blue) are shown. 
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accuracy (±0.1 mm) that matches or exceeds that of automatic registration (Li, et al, 2008c). 
Therefore, combining an automatic registration with the 3DVIR technique seems a desirable 
alternative to overcome the limitations of the 2D fusion method, providing a solution for 
registration verification with preserved or even enhanced accuracy, as shown in Fig. 2. 

 
2. 3D Volumetric Image Registration (3DVIR) 
 

2.1 Volumetric Image Visualization and Classification 
Volumetric image visualization is an advanced image rendering technique, which generally 
offers two different approaches: (1) object-order volume rendering and (2) image-order 
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the 3DVIR technique, however, the following equations are used to mimic the physical 
appearance of an image volume with controllable transparency: 
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where the superscripts i and i+1 represent the two consecutive steps along the ray path and 
the subscript represents accumulative values, which are the blended RGBA values for the 
pixels up to the steps i or i+1. For any voxel with Ai = 0 (totally transparent), it does not 
contribute to the pixel. For any voxel with Ai = 1 (totally opaque) or AiAccum = 1 (becoming 
opaque after step i), all voxels afterward along the ray are invisible as they no longer 
contribute to the blended pixel in the image plane.  
 
Four lookup tables (LUTs) over the image histogram are utilized to control the voxel RGBA 
value based on voxel greyscale. The transparency A-LUT in the histogram can be used for 
image classification, which relies on large greyscale gradient at interface of an anatomy, as 
shown in Fig. 4. Mono-coloured image can also be created using the RGB LUT(s), such as a 
primary colour (e.g., red: R; G=B=0), a secondary colour (e.g., yellow: R=G; B=0), or a 
tertiary colour (e.g., white: R=G=B). These pseudo-colour representations of the volumetric 
images enable visual-based image alignment using volumetric anatomical landmarks. In 

 

 

practice, we recommend to use the three primary colours (RGB), so that the origin of a voxel is 
instantly identifiable without interference from synthesized secondary colours. The white 
colour should be used for the 4th image, which can be identified by its colour appearance and 
by toggling on and off this image, since white can also result from overlay of the other three 
images (RGB). Up to four volumetric images can be rendered simultaneously via the ray 
casting and they can be individually turned on or off as desired. 
 

 
Fig. 3. Illustration of ray casting and RGBA blending for volumetric image rendering. (taken 
from Li, et al, JACMP, 2008c) 
 

 
Fig. 4. Illustration of image classification using the transparency lookup table, which is the 
sophisticated form of window-level function. The skin (red) and bone (blue) are shown. 
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2.2 Visual Criterion of the Volumetric Image Registration 
When two mono-coloured, identical images are overlaid in space, the colour blending of the 
equal-intensity (greyscale) voxels produce a homogeneously coloured image based on the 
colour synthesis rule of light. For instance, the overlay of equally-weighted red and green 
will result in a yellow appearance. Therefore, an ideal image alignment will show a perfect 
homogeneous colour distribution on a volumetric anatomic landmark. On the other hand, 
any misalignment of two rigid images will show various degrees of colour heterogeneity 
distributed on the volumetric landmark, as shown in Fig. 2. Therefore, the homogeneity of 
colour distribution on volumetric anatomical landmarks has been established as the visual 
registration criterion (Li et al, 2005). 
 
It is worthwhile to mention that the greyscale of the mono-coloured image is controlled by 
the RGB-LUT(s), which have a value of 0 to 1 (dark to bright). Such mono-colour greyscale is 
important to show the stereo-spatial effect; without it (e.g., a flat LUT=constant) the 
landmarks are hard to be identified as 3D objects, except for the peripheral region in the 2D 
image plane. So, an uneven greyscale should be used in the RGB-LUT(s), as shown in Fig. 4, 
and the colour greyscale variation should not be regarded as colour heterogeneity. 

 
2.3 Quantitative Criterion of the Volumetric Registration 
Quantitatively, the above visual-based criterion for volumetric alignment can be directly 
translated into a mathematical expression. By definition, the homogeneity of the colour 
distribution on a given volumetric anatomical landmark should have minimal variance in 
the visible voxel intensity difference (VVID) between any two mono-coloured imaging 
modalities, namely a random colour distribution (or “snow pattern”). In other words, a 
misalignment should appear to have a systematic, colour-biased distribution (or global 
alignment aberration), which should show a large variation of the VVID. 
 
With uniform sampling across the image plane, about 4% of the pixels are sufficient for 
evaluating the registration criterion. The visible voxels on the anatomical landmark can be 
traced along the ray automatically using a special algorithm under the ray casting rendering 
scheme (Li, et al, 2008c). Mathematically, for any visible voxel (i), the VVID is defined: 
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where A
iI and B

iI (<256 = 8 bits) are the VVI from images A and B, respectively. For all 
sampled voxels, the variance of the VVID is: 
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where    NII i  represents the average of the VVID and N is the total number of 

the voxels sampled, excluding completely transparent rays. In case of two identical images, 
the variance of VVID approaches zero at the perfect alignment, as shown in Fig. 2. 

 

 

In multi-modality image registration, the average voxel intensity of an anatomical landmark 
can differ substantially between modalities, so a baseline correction is required. Therefore, a 
modality baseline weighting factor (R) is introduced as: 
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and the modified variance (mVAR) with baseline correction is defined as: 
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where    NII i **  is the average of modified VVID )*( B
i

A
ii IRII  . This 

quantitative measure, when minimized, indicates an optimal image alignment from a single 
viewing point. 
 
To evaluate the volumetric image alignment, multiple views (e.g., six views) should be used 
to provide a comprehensive evaluation, although single view is sufficient for fine tuning 
around the optimal alignment (Li, et al, 2007). A simple or weighted average of the mVAR 
from different views can serve as the cost function with a high confidence level, as each 
individual mVAR can be cross-verified with each other. In addition, the quantitative criteria 
can be verified by visual examination with similar sensitivity, avoiding local minima. 

 
2.4 Advantages of Volumetric Image Registration 
With both the visual and the quantitative registration criteria, this interactive registration 
technique can be readily upgraded into an automatic registration technique, which is an on-
going investigation. Currently, the quantitative criterion can be applied in the fine-tuning 
stage of image registration, minimizing the potential user dependency. As a comparison, the 
2D visual based fusion technique does not have such quantitative evaluation on the 
alignment. The precision for the rigid transformation and linear interpolation is set at 0.1 
voxel (~mm), although it is not limited, matching the high spatial sensitivity of the 3DVIR 
technique, as shown in Fig. 2. Similar accuracy has been found between the visual and 
quantitative criteria (will be discussed in the next section), allowing visual verification of the 
potential automatic 3DVIR with the consistent accuracy and reliability. 
 
The design of the volumetric image registration enables user to simultaneously process up 
to four images, meeting the challenges of increasing imaging modalities used in the clinic 
and eliminating potential error propagation from separated registrations. The flowchart of 
the volumetric image registration process is demonstrated in Fig. 5. The image buffer (32 
bits) is divided into 4 fields for 4 images (8 bits or 256 greyscale each). Transformation 
operation can be applied to any of the four image fields for alignment and all four images 
are rendered together for real-time visual display, supported by a graph processing unit 
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2.2 Visual Criterion of the Volumetric Image Registration 
When two mono-coloured, identical images are overlaid in space, the colour blending of the 
equal-intensity (greyscale) voxels produce a homogeneously coloured image based on the 
colour synthesis rule of light. For instance, the overlay of equally-weighted red and green 
will result in a yellow appearance. Therefore, an ideal image alignment will show a perfect 
homogeneous colour distribution on a volumetric anatomic landmark. On the other hand, 
any misalignment of two rigid images will show various degrees of colour heterogeneity 
distributed on the volumetric landmark, as shown in Fig. 2. Therefore, the homogeneity of 
colour distribution on volumetric anatomical landmarks has been established as the visual 
registration criterion (Li et al, 2005). 
 
It is worthwhile to mention that the greyscale of the mono-coloured image is controlled by 
the RGB-LUT(s), which have a value of 0 to 1 (dark to bright). Such mono-colour greyscale is 
important to show the stereo-spatial effect; without it (e.g., a flat LUT=constant) the 
landmarks are hard to be identified as 3D objects, except for the peripheral region in the 2D 
image plane. So, an uneven greyscale should be used in the RGB-LUT(s), as shown in Fig. 4, 
and the colour greyscale variation should not be regarded as colour heterogeneity. 
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Quantitatively, the above visual-based criterion for volumetric alignment can be directly 
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distribution on a given volumetric anatomical landmark should have minimal variance in 
the visible voxel intensity difference (VVID) between any two mono-coloured imaging 
modalities, namely a random colour distribution (or “snow pattern”). In other words, a 
misalignment should appear to have a systematic, colour-biased distribution (or global 
alignment aberration), which should show a large variation of the VVID. 
 
With uniform sampling across the image plane, about 4% of the pixels are sufficient for 
evaluating the registration criterion. The visible voxels on the anatomical landmark can be 
traced along the ray automatically using a special algorithm under the ray casting rendering 
scheme (Li, et al, 2008c). Mathematically, for any visible voxel (i), the VVID is defined: 
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where    NII i  represents the average of the VVID and N is the total number of 

the voxels sampled, excluding completely transparent rays. In case of two identical images, 
the variance of VVID approaches zero at the perfect alignment, as shown in Fig. 2. 
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can differ substantially between modalities, so a baseline correction is required. Therefore, a 
modality baseline weighting factor (R) is introduced as: 
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quantitative measure, when minimized, indicates an optimal image alignment from a single 
viewing point. 
 
To evaluate the volumetric image alignment, multiple views (e.g., six views) should be used 
to provide a comprehensive evaluation, although single view is sufficient for fine tuning 
around the optimal alignment (Li, et al, 2007). A simple or weighted average of the mVAR 
from different views can serve as the cost function with a high confidence level, as each 
individual mVAR can be cross-verified with each other. In addition, the quantitative criteria 
can be verified by visual examination with similar sensitivity, avoiding local minima. 

 
2.4 Advantages of Volumetric Image Registration 
With both the visual and the quantitative registration criteria, this interactive registration 
technique can be readily upgraded into an automatic registration technique, which is an on-
going investigation. Currently, the quantitative criterion can be applied in the fine-tuning 
stage of image registration, minimizing the potential user dependency. As a comparison, the 
2D visual based fusion technique does not have such quantitative evaluation on the 
alignment. The precision for the rigid transformation and linear interpolation is set at 0.1 
voxel (~mm), although it is not limited, matching the high spatial sensitivity of the 3DVIR 
technique, as shown in Fig. 2. Similar accuracy has been found between the visual and 
quantitative criteria (will be discussed in the next section), allowing visual verification of the 
potential automatic 3DVIR with the consistent accuracy and reliability. 
 
The design of the volumetric image registration enables user to simultaneously process up 
to four images, meeting the challenges of increasing imaging modalities used in the clinic 
and eliminating potential error propagation from separated registrations. The flowchart of 
the volumetric image registration process is demonstrated in Fig. 5. The image buffer (32 
bits) is divided into 4 fields for 4 images (8 bits or 256 greyscale each). Transformation 
operation can be applied to any of the four image fields for alignment and all four images 
are rendered together for real-time visual display, supported by a graph processing unit 
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