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Abstract 
 

Adaptive control has been developed for decades, and now it has become a rigorous and 
mature discipline which mainly focuses on dealing parametric uncertainties in control 
systems, especially linear parametric systems. Nonparametric uncertainties were seldom 
studied or addressed in the literature of adaptive control until new areas on exploring 
limitations and capability of feedback control emerged in recent years. Comparing with the 
approach of robust control to deal with parametric or nonparametric uncertainties, the 
approach of adaptive control can deal with relatively larger uncertainties and gain more 
flexibility to fit the unknown plant because adaptive control usually involves adaptive 
estimation algorithms which play role of “learning” in some sense. 
This chapter will introduce a new challenging topic on dealing with both parametric and 
nonparametric internal uncertainties in the same system. The existence of both two kinds of 
uncertainties makes it very difficult or even impossible to apply the traditional recursive 
identification algorithms which are designed for parametric systems. We will discuss by 
examples why conventional adaptive estimation and hence conventional adaptive control 
cannot be applied directly to deal with combination of parametric and nonparametric 
uncertainties. And we will also introduce basic ideas to handle the difficulties involved in 
the adaptive estimation problem for the system with combination of parametric and 
nonparametric uncertainties. Especially, we will propose and discuss a novel class of 
adaptive estimators, i.e. information-concentration (IC) estimators. This area is still in its infant 
stage, and more efforts are expected in the future for gainning comprehensive 
understanding to resolve challenging difficulties. 
Furthermore, we will give two concrete examples of semi-parametric adaptive control to 
demonstrate the ideas and the principles to deal with both parametric and nonparametric 
uncertainties in the plant. (1) In the first example, a simple first-order discrete-time nonlinear 
system with both kinds of internal uncertainties is investigated, where the uncertainty of 
non-parametric part is characterized by a Lipschitz constant L, and the nonlinearity of 
parametric part is characterized by an exponent index b. In this example, based on the idea 
of the IC estimator, we construct a unified adaptive controller in both cases of b = 1 and 
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b > 1, and its closed-loop stability is established under some conditions.  When the  
parametric part is bilinear (b = 1), the conditions given reveal the magic number 

2
2

3 + which appeared in previous study on capability and limitations of the feedback 

mechanism. (2) In the second example with both parametric uncertainties and non-
parametric uncertainties, the controller gain is also supposed to be unknown besides the 
unknown parameter in the parametric part, and we only consider the noise-free case. For this 
model, according to some a priori knowledge on the non-parametric part and the unknown 
controller gain, we design another type of adaptive controller based on a gradient-like 
adaptation law with time-varying deadzone so as to deal with both kinds of uncertainties.  
And in this example we can establish the asymptotic convergence of tracking error under 
some mild conditions, althouth these conditions required are not as perfect as in the first 

example in sense that L < 0.5 is far away from the best possible bound 2
2

3 + .  

These two examples illustrate different methods of designing adaptive estimation and 
control algorithms.  However, their essential ideas and principles are all based on the a 
priori knowledge on the system model, especially on the parametric part and the non-
parametric part. From these examples, we can see that the closed-loop stability analysis is 
rather nontrivial. These examples demonstrate new adaptive control ideas to deal with two 
kinds of internal uncertainties simultaneously and illustrates our elementary theoretical 
attempts in establishing closed-loop stability. 

 
1. Introduction 
 

This chapter will focus on a special topic on adaptive estimation and control for systems with 
parametric and nonparametric uncertainties. Our discussion on this topic starts with a very 
brief introduction to adaptive control. 

 
1.1 Adaptive Control 

As stated in [SB89], “Research in adaptive control has a long and vigorous history” since 
the initial study in 1950s on adaptive control which was motivated by the problem of 
designing autopilots for air-craft operating at a wide range of speeds and altitudes. With 
decades of efforts, adaptive control has become a rigorous and mature discipline which 
mainly focuses on dealing parametric uncertainties in control systems, especially linear 
parametric systems. 
From the initial stage of adaptive control, this area has been aiming at study how to deal 
with large uncertainties in control systems. This goal of adaptive control essentially means 
that one adaptive control law cannot be a fixed controller with fixed structure and fixed 
parameters because any fixed controller usually can only deal with small uncertainties in 
control systems. The fact that most fixed controllers with certain structure (e.g.  linear 
feedback control) designed for an exact system model (called nominal model) can also work 
for a small range of changes in the system parameter is often referred to as robustness, 
which is the kernel concept of another area, robust control. While robust control focuses on 
studying the stability margin of fixed controllers (mainly linear feedback controller), whose 
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design essentially relies on priori knowledge on exact nominal system model and bounds 
of uncertain parameters, adaptive control generally does not need a priori information 
about the bounds on the uncertain or (slow) time-varying parameters. Briefly speaking, 
comparing with the approach of robust control to deal with parametric or nonparametric 
uncertainties, the approach of adaptive control can deal with relatively larger uncertainties 
and gain more flexibility to fit the unknown plant because adaptive control usually 
involves adaptive estimation algorithms which play role of “learning” in some sense. 
The advantages of adaptive control come from the fact that adaptive controllers can adapt 
themselves to modify the control law based on estimation of unknown parameters by 
recursive identification algorithms. Hence the area of adaptive control has close connections 
with system identification, which is an area aiming at providing and investigating 
mathematical tools and algorithms that build dynamical models from measured data. 
Typically, in system identification, a certain model structure is chosen by the user which 
contains unknown parameters and then some recursive algorithms are put forward based 
on the structural features of the model and statistical properties of the data or noise.  The 
methods or algorithms developed in system identification are borrowed in adaptive control 
in order to estimate the unknown parameters in the closed loop. For convenience, the 
parameter estimation methods or algorithms adopted in adaptive control are often 
referred to as adaptive estimation methods.  Adaptive estimation and system identification 
share many similar characteristics, for example, both of them originate and benefit from 
the development of statistics. One typical example is the frequently used least-squares (LS) 
algorithm, which gives parameter estimation by minimizing the sum of squared errors (or 
residuals), and we know that LS algorithm plays important role in many areas including 
statistics, system identification and adaptive control. We shall also remark that, in spite of 
the significant similarities and the same origin, adaptive estimation is different from 
system identification in sense that adaptive estimation serves for adaptive control and 
deals with dynamic data generated in the closed loop of adaptive controller, which means 
that statistical properties generally cannot be guaranteed or verified in the analysis of 
adaptive estimation.  This unique feature of adaptive estimation and control brings many 
difficulties in mathematical analysis, and we will show such difficulties in later examples 
given in this paper. 

 
1.2 Linear  Regression Model and Least Square  Algorithm 
 

Major parts in existing study on regression analysis (a branch of statistics) [DS98, Ber04, 
Wik08j], time series analysis [BJR08, Tsa05], system identification [Lju98, VV07] and 
adaptive control [GS84, AW89, SB89, CG91, FL99] center on the following linear regression 
model 
 

kkk vz += φθ τ
                                                   (1) 

 

where }{ kz , kφ , kv represent observation data, regression vector and noise disturbance (or 

external uncertainties), respectively. Here θ is the unknown parameter to be estimated.  
Linear regression models have many applications in many disciplines of science and 
engineering [Wik08g, web08, DS98, Hel63, Wei05, MPV07, Fox97, BDB95]. For example, as 
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stated in [web08], Linear regression is probably the most widely used, and useful, statistical 
technique for solving environmental problems. Linear regression models are extremely powerful, and 
have the power to empirically tease out very complicated relationships between variables. Due to the 
importance of model (1.1), we list several simple examples for illustration: 
� Assume that a series of (stationary) data (xk , yk ) (k = 1, 2, · · · , N ) are generated from the 

following model 
 εββ ++= XY 10  

 

where β0 , β1  are unknown parameters, }{ kx are i. i. d. taken from a certain probability 

distribution, and ),0( 2σε Nk ≈  is random noise independent of X . For this model, let θ 

= [β0 , β1 ]τ , φk = [1, xk ]τ , then we have kkky εφθ τ += . This example is a classic 

topic in statistics to study the statistical properties of parameter estimates θ̂N as the data size 

N grows to infinity. The statistical properties of interests may include )ˆVar(),ˆE( θθθ − , 

and so on.  

� Unlike the above example, in this example we assume that kx  and 1+kx  have close 

relationship modeled by 
 

kkk xx εββ ++=+ 101  

 

where β0, β1 are unknown parameters, and  ),0( 2σε Nk ≈  are i. i. d. random noise 

independent of {x1, x2, · · · , xk}. 
This model is an example of linear time series analysis, which aims to study asymptotic 

statistical properties of parameter estimates  under certain assumptions on statistical 

properties of kε . Note that for this example, it is possible to deduce an explicit expression 

of xk in terms of jε  ( 1,,1,0 −= kj L ).  

� In this example, we consider a simple control system 
 

kkkk buxx εββ +++=+ 101  

 

where b ≠ 0 is the controller gain, kε  is the noise disturbance at time step k. For this model, 

in case where b is known a priori, we can take; 
τββθ ],[ 10= , 

τφ ],1[ 1−= kk x , 

1−−= kkk buxz ;otherwise, we can take  
τββθ ],,[ 10 b= , τφ ],1[ 1−= kk x , 

1−−= kkk buxz .  

In both cases, the system can be rewritten as 
 

kkkz εφθ τ +=  
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which implies that intuitively, θ can be estimated by using the identification algorithm since 

both data zk and 
kφ  are available at time step k. Let 

kθ̂  denote the parameter estimates at 

time step 
kθ̂ , then we can design the control signal 

ku  by regarding  as the real parameter 

θ: 
 

 
 

where { kr } is the known reference signal to be tracked, and  b̂ , 0β̂ , 1β̂  are estimates of b , 

0β , 1β , respectively. Note that for this example, the closed-loop system will be very 

complex because the data generated in the closed loop essentially depend on all history 
signals. In the closed-loop system of an adaptive controller, generally it is difficult to 
analyze or verify statistical properties of signals, and this fact makes that adaptive 
estimation and control cannot directly employ techniques or results from system 
identification. Now we briefly introduce the frequently-used LS algorithm for model (1.1) 
due to its importance and wide applications [LH74, Gio85, Wik08e, Wik08f, Wik08d]. The 
idea of LS algorithm is simply to minimize the sum of squared errors, that is to say, 
 

                            (1.2) 
 

This idea has a long history rooted from great mathematician Carl Friedrich Gauss in 1795 
and published first by Legendre in 1805. In 1809, Gauss published this method in volume 
two of his classical work on celestial mechanics, heoria Motus Corporum Coelestium in 
sectionibus conicis solem ambientium[Gau09], and later in 1829, Gauss was able to state that the 
LS estimator is optimal in the sense that in a linear model where the errors have a mean of 
zero, are uncorrelated, and have equal variances, the best linear unbiased estimators of the 
coefficients is the least-squares estimators. This result is known as the Gauss-Markov 
theorem [Wik08a]. 
By Eq. (1.2), at every time step, we need to minimize the sum of squared errors, which 
requires much computation cost. To improve the computational efficiency, in practice we 
often use the recursive form of LS algorithm, often referred to as recursive LS algorithm, 
which will be derived in the following. First, introducing the following notations 
 

                              (1.3) 
 

and using Eq. (1.1), we obtain that 
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Noting that 
 

 
 

where the last equation is derived from properties of Moore-Penrose pseudoinverse  
[Wik08h] 
 

 
 

we know that the minimum of  ][][ ςς τ
nnnn ZZ Φ−Φ−  can be achieved at 

 

                                            (1.4) 
 

which is the LS estimate of θ. Let 
 

 
 
and then, by Eq. (1.3), with the help of matrix inverse identity 
 

 
 
we can obtain that 
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Further, 
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Thus, we can obtain the following recursive LS algorithm 
 

 
 

where Pn−1 and θn−1 reflect only information up to step n − 1, while an, 
nφ  and 1−− nnnz θφττ

 

reflect information up to step n. 
In statistics, besides linear parametric regression, there also exist generalized linear models 
[Wik08b] and non-parametric regression methods [Wik08i], such as kernel regression 
[Wik08c]. Interested readers can refer to the wiki pages mentioned above and the references 
therein. 

 
1.3 Uncertainties and Feedback Mechanism 

By the discussions above, we shall emphasize that, in a certain sense, linear regression 
models are kernel of classical (discrete-time) adaptive control theory, which focuses to cope 
with the parametric uncertainties in linear plants. In recent years, parametric uncertainties 
in nonlinear plants have also gained much attention in the literature[MT95, Bos95, Guo97, 
ASL98, GHZ99, LQF03]. Reviewing the development of adaptive control, we find that 
parametric uncertainties were of primary interests in the study of adaptive control, no 
matter whether the considered plants are linear or nonlinear. Nonparametric uncertainties 
were seldom studied or addressed in the literature of adaptive control until some new areas 
on understanding limitations and capability of feedback control emerged in recent years. 
Here we mainly introduce the work initiated by Guo, who also motivated the authors’ 
exploration in the direction which will be discussed in later parts.  
Guo’s work started from trying to understand fundamental relationship between the 
uncertainties and the feedback control. Unlike traditional adaptive theory, which focuses on 
investigating closed-loop stability of certain types of adaptive controllers, Guo began to 
think over a general set of adaptive controllers, called feedback mechanism, i.e., all possible 
feedback control laws. Here the feedback control laws need not be restricted in a certain 
class of controllers, and any series of mappings from the space of history data to the space of 
control signals is regarded as a feedback control law. With this concept in mind, since the 
most fundamental concept in automatic control, feedback, aims to reduce the effects of the 

www.intechopen.com



Adaptive Control 

 

22 

plant uncertainty on the desired control performance, by introducing the set F of internal 
uncertainties in the plant and the whole feedback mechanism U, we wonder the following 
basic problems: 
1. Given an uncertainty set F, does there exist any feedback control law in U which can 
stabilize the plant? This question leads to the problem of how to characterize the maximum 
capability of feedback mechanism. 
2. If the uncertainty set F is too large, is it possible that any feedback control law in U cannot 
stabilize the plant? This question leads to the problem of how to characterize the limitations 
of feedback mechanism. 
 
The philosophical thoughts to these problems result in fruitful study [Guo97, XG00, ZG02, 
XG01, LX06, Ma08a, Ma08b]. 
The first step towards this direction was made in [Guo97], where Guo attempted to answer 
the following question for a nontrivial example of discrete-time nonlinear polynomial plant 
model with parametric uncertainty: What is the largest nonlinearity that can be dealt with 
by feedback? More specifically, in [Guo97], for the following nonlinear uncertain system 
 

                        (1.5) 
 

where θ  is the unknown parameter, b characterizes the nonlinear growth rate of the 

system, and {
tw } is the Gaussian noise sequence, a critical stability result is found — system 

(1.5) is not a.s. globally stabilizable if and only if b ≥ 4. This result indicates that there exist 
limitations of the feedback mechanism in controlling the discrete-time nonlinear adaptive 
systems, which is not seen in the corresponding continuous-time nonlinear systems (see 
[Guo97, Kan94]). The “impossibility” result has been extended to some classes of uncertain 
nonlinear systems with unknown vector parameters in [XG99, Ma08a] and a similar result 
for system (1.5) with bounded noise is obtained in [LX06]. 
Stimulated by the pioneering work in [Guo97], a series of efforts ([XG00, ZG02, XG01, 
MG05]) have been made to explore the maximum capability and limitations of feedback 
mechanism. Among these work, a breakthrough for non-parametric uncertain systems was 
made by Xie and Guo in [XG00], where a class of first-order discrete-time dynamical control 
systems 
 

                                 (1.6) 
 

is studied and another interesting critical stability phenomenon is proved by using new 
techniques which are totally different from those in [Guo97]. More specifically, in [XG00], 
F(L) is a class of nonlinear functions satisfying Lipschitz condition, hence the Lipschitz 
constant L can characterize the size of the uncertainty set F(L). Xie and Guo obtained the 

following results: if  2
2

3 +≥L , then there exists a feedback control law such that for any 

f  F(L), the corresponding closed-loop control system is globally stable; and if 

2
2

3 +<L , then for any feedback control law and any 
1

0 Ry ∈ , there always exists 
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some )(LFf ∈ such that the corresponding closed-loop system is unstable. So for system 

(1.6), the “magic” number  2
2

3 +  characterizes the capability and limits of the whole 

feedback mechanism. The impossibility part of the above results has been generalized to 
similar high-order discrete-time nonlinear systems with single Lipschitz constant [ZG02] 
and multiple Lipschitz constants [Ma08a]. From the work mentioned above, we can see two 
different threads: one is focused on parametric nonlinear systems and the other one is 
focused on non-parametric nonlinear systems. By examining the techniques in these threads, 
we find that different difficulties exist in the two threads, different controllers are designed 
to deal with the uncertainties and completely different methods are used to explore the 
capability and limitations of the feedback mechanism. 

 
1.4 Motivation of Our Work 

From the above introduction, we know that only parametric uncertainties were considered 
in traditional adaptive control and non-parametric uncertainties were only addressed in 
recent study on the whole feedback mechanism. This motivates us to explore the following 
problems: When both parametric and non-parametric uncertainties are present in the 
system, what is the maximum capability of feedback mechanism in dealing with these 
uncertainties? And how to design feedback control laws to deal with both kinds of internal 
uncertainties? Obviously, in most practical systems, there exist parametric uncertainties 
(unknown model parameters) as well as non-parametric uncertainties (e.g. unmodeled 
dynamics). Hence, it is valuable to explore answers to these fundamental yet novel 
problems. Noting that parametric uncertainties and non-parametric uncertainties essentially 
have different nature and require completely different techniques to deal with, generally it 
is difficult to deal with them in the same loop. Therefore, adaptive estimation and control in 
systems with parametric and non-parametric uncertainties is a new challenging direction. In 
this chapter, as a preliminary study, we shall discuss some basic ideas and principles of 
adaptive estimation in systems with both parametric and non-parametric uncertainties; as to 
the most difficult adaptive control problem in systems with both parametric and non-
parametric uncertainties, we shall discuss two concrete examples involving both kinds of 
uncertainties, which will illustrate some proposed ideas of adaptive estimation and special 
techniques to overcome the difficulties in the analysis closed-loop system. Because of 
significant difficulties in this new direction, it is not possible to give systematic and 
comprehensive discussions here for this topic, however, our study may shed light on the 
aforementioned problems, which deserve further investigation. 
The remainder of this chapter is organized as follows. In Section 2, a simple semi-parametric 
model with parametric part and non-parametric part will be introduced first and then we 
will discuss some basic ideas and principles of adaptive estimation for this model. Later in 
Section 3 and Section 4, we will apply the proposed ideas of adaptive estimation and 
investigate two concrete examples of discrete-time adaptive control: in the first example, a 
discrete-time first-order nonlinear semi-parametric model with bounded external noise 
disturbance is discussed with an adaptive controller based on information-contraction 
estimator, and we give rigorous proof of closed-loop stability in case where the uncertain 
parametric part is of linear growth rate, and our results reveal again the magic number 
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2
2

3 + ; in the second example, another noise-free semi-parametric model with 

parametric uncertainties and non-parametric uncertainties is discussed, where a new 
adaptive controller based on a novel type of update law with deadzone will be adopted to 
stabilize the system, which provides yet another view point for the adaptive estimation and 
control problem for the semi-parametric model. Finally, we give some concluding remarks 
in Section 5. 

 
2. Semi-parametric Adaptive Estimation: Principles and Examples 
 

2.1 One Semi-parametric System Model 

Consider the following semi-parametric model 
 

kkkk fz εφφθ τ ++= )(                                              (2.1) 

 
where θ   Θ denotes unknown parameter vector, f(·)  F denotes unknown function and 

kk Δ∈ε denote external noise disturbance. Here Θ, F and ∆k represent a priori knowledge 

on possible θ , )( kf φ  and kε , respectively. In this model, let 

 
 

then Eq. (2.1) becomes Eq. (1.1). Because each term of right hand side of Eq. (2.1) involves 

uncertainty, it is difficult to estimate θ , )( kf φ  and kε  simultaneously. 

Adaptive estimation problem can be formulated as follows: Given a priori knowledge on θ, 
f(·) and kε , how to estimate θ and f(·) according to a series of data { nkz kk ,,2,1;, L=φ } 

Or in other words, given a priori knowledge on θ and vk, how to estimate θ and vk according 

to a series of data { nkz kk ,,2,1;, L=φ }. 

Now we list some examples of a priori knowledge to show various forms of adaptive 
estimation problem. 
 
Example 2.1 As to the unknown parameter θ, here are some commonly-seen examples of a priori 
knowledge: 

� There is no any a priori knowledge on θ  except for its dimension. This means that θ can be 
arbitrary and we do not know its upper bound or lower bound. 

� The upper and lower bounds of θ are known, i.e. θθθ ≤≤ , where θ  and θ  are constant vector 

and the relationship “≤” means element-wise “less or equal”. 
� The distance between θ and a nominal θ0 is bounded by a known constant, i.e. ||θ − θ0 || ≤ rθ, 
where rθ  ≥ 0 is a known constant and θ0 is the center of set Θ. 
� The unknown parameter lies in a known countable or finite set of values, that is to say, θ  { θ1, θ2, 
θ 3, · · · }. 
Example 2.2 As to the unknown function f(·), here are some possible examples of a priori knowledge: 
� f(x) = 0 for all x. This case means that there is no unmodeled dynamics. 
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� Function f is bounded by other known functions, that is to say, )()()( xfxfxf ≤≤ for any x. 

� The distance between f and a nominal f0 is bounded by a known constant, i.e. ||f − f0|| ≤ rf , 
where rf  ≥ 0 is a known constant and f0 can be regarded as the center of a ball F in a metric functional 
space with norm || · ||. 
� The unknown function lies in a known countable or finite set of functions, that is to say, f  {f1, f2, 
f3, · · · }. 

� Function f is Lipschitz, i.e. ||)()( 2121 xxLxfxf −≤−  for some constant L > 0. 

� Function f is monotone (increasing or decreasing) with respect to its arguments. 
� Function f is convex (or concave). 
� Function f is even (or odd). 

Example 2.3 As to the unknown noise term kε , here are some possible examples of a priori 

knowledge: 

� Sequence kε = 0. This case means that no noise/disturbance exists. 

� Sequence kε  is bounded in a known range, that is to say, εεε ≤≤ k  for any k. One special case 

is εε −= . 

� Sequence kε is bounded by a diminishing sequence, e.g, 
k

k

1
|| ≤ε  for any k . This case means 

that the noise disturbance converges to zero with a certain rate. Other typical rate sequences include 

}
1

{
2k

, }{ kδ  ( 10 << δ ), and so on. 

� Sequence kε is bounded by other known sequences, that is to say,  for any k. 

This case generalizes the above 
cases. 

� Sequence kε is in a known finite set of values, that is to say, },,,{ 21 Nk eee L∈ε . This case 

may happen in digital systems where all signals can only take values in a finite set. 

� Sequence kε is oscillatory with specific patterns, e.g. kε > 0 if k is even and kε < 0 if k is odd. 

� Sequence kε has some statistical properties, for example, 0=kEe , 
22 σ=kEe ;; for another 

example, sequence { kε } is i.i.d. taken from a probability distribution e.g. )1,0(Uk ≈ε . 

 
Parameter estimation problems (without non-parametric part) involving statistical 
properties of noise disturbance are studied extensively in statistics, system identification 
and traditional adaptive control. However, we shall remark that other non-statistic 
descriptions on a priori knowledge is more useful in practice yet seldom addressed in 
existing literature. In fact, in practical problems, usually the probability distribution of the 
noise/disturbance (if any) is not known and many cases cannot be described by any 
probability distribution since noise/disturbance in practical systems may come from many 
different types of sources. Without any a priori knowledge in mind, one frequently-used way 
to handle the noise is to simply assume the noise is Gaussian white noise, which is 
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reasonable in a certain sense. But in practice, from the point of view of engineering, we can 
usually conclude the noise/disturbance is bounded in a certain range. This chapter will 
focus on uncertainties with non-statistical a priori knowledge. Without loss of generality, in 

this section we often regard kkk fv εφ += )(  as a whole part, and correspondingly, a priori 

knowledge on kv , (e.g. kkk vvv ≤≤ ), should be provided for the study. 

 
2.2 An Example Problem 
 

Now we take a simple example to show that it may not be appropriate to apply traditional 
identification algorithms blindly so as to get the estimate of unknown parameter. 
Consider the following system 
 

kkkk kfz εφθφ ++= ),(                                                (2.2) 

 

where θ, f(·) and kε  are unknown parameter, unknown function and unmeasurable noise, 

respectively. For this model, suppose that we have the following a priori knowledge on the 
system: 
� No a priori knowledge on θ is known. 

� At any step k, the term  is of form . Here  is an 
unknown sequence satisfying 0 ≤  ≤ 1. 

� Noise kε  is diminishing with . 

And in this example, our problem is how to use the data generated from model (2.2) so as to 
get a good estimate of true value of parameter θ. In our experiment, the data is generated by 
the following settings (k = 1, 2, · · · , 50): 
 

5=θ , 
10

k
k =φ , )|sinexp(|),( kk kkf φφ = , )5.0(

1 −= kk
k
αε  

 

where }{ kα  are i.i.d. taken from uniform distribution U(0, 1). Here we have N = 50 groups 

of data . 
Since model (2.2) involves various uncertainties, we rewrite it into the following form of 
linear regression  
 

                                                          (2.3) 
 
by letting 
 

kkk kfv εφ += ),( . 

 
From the a priori knowledge for model (2.2), we can obtain the following a priori knowledge 
for the term vk 

www.intechopen.com



Adaptive Estimation and Control for Systems with Parametric and Nonparametric Uncertainties 

 

27 

 
 
where 
 

 
 

Since model (2.3) has the form of linear regression, we can use try traditional identification 
algorithms to estimate θ. Fig. 1 illustrates the parameter estimates for this problem by using 
standard LS algorithm, which clearly show that LS algorithm cannot give good parameter 
estimate in this example because the final parameter estimation error 

68284.5ˆ~ ≈−= θθθ k  is very large. 

 

 
Fig. 1. The dotted line illustrates the parameter estimates obtained by standard least-squares 
algorithm. The straight line denotes the true parameter. 

 
One may then argue that why LS algorithm fails here is just because the term kv  is in fact 

biased and we indeed do not utilize the a priori knowledge on vk. Therefore, we may try a 
modified LS algorithm for this problem: let 
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then we can conclude that kkk wy += φθ τ
and ],[ kkk ddw −∈ , where ],[ kk dd− is a 

symmetric interval for every k. Then, intuitively, we can apply LS algorithm to data 

{ ),( kk zφ , k = 1, 2, · · · ,N}. The curve of parameter estimates obtained by this modified LS 

algorithm is plotted in Fig. 2. Since the modified LS algorithm has removed the bias in the a 
priori knowledge, one may expect the modified LS algorithm may give better parameter 
estimates, which can be verified from Fig. 2 since the final parameter estimation error 

83314.1ˆ~ −≈−= θθθ NN . In this example, although the modified LS algorithm can 

work better than the standard LS algorithm, the modified LS algorithm in fact does not help 
much in solving our problem since the estimation error is still very large comparing with the 
true value of the unknown parameter. 
 

 
Fig. 2. The dotted line illustrates the parameter estimates obtained by modified least-squares 
algorithm. The straight line denotes the true parameter. 
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From this example, we do not aim to conclude that traditional identification algorithms 
developed in linear regression are not good, however, we want to emphasize the following 
particular point: Although traditional identification algorithms (such as LS algorithm) are very 
powerful and useful in practice, generally it is not wise to apply them blindly when the matching 
conditions, which guarantee the convergence of those algorithms, cannot be verified or asserted a 
priori. This particular point is in fact one main reason why the so-called minimum-variance 
self tuning regulator, developed in the area of adaptive control based on the LS algorithm, 
attracted several leading scholars to analyze its closed-loop stability throughout past 
decades from the early stage of adaptive control. 
To solve this example and many similar examples with a priori knowledge, we will propose 
new ideas to estimate the parametric uncertainties and the non-parametric uncertainties. 

 
2.3 Information-Concentration Estimator 

We have seen that there exist various forms of a priori knowledge on system model. With the 
a priori knowledge, how can we estimate the parametric part and the non-parametric part? 
Now we introduce the so-called information-concentration estimator. The basic idea of this 
estimator is, the a priori knowledge at each time step can be regarded as some constraints of 
the unknown parameter or function, hence the growing data can provide more and more 
information (constraints) on the true parameter or function, which enable us to reduce the 
uncertainties step by step. We explain this general idea by the simple model 
 

                                                         (2.4) 
 

with a priori knowledge that 
kk

d VR ∈⊆Θ∈ υθ , . Then, at k-th step (k ≥1), with the 

current data k, 
kk z,φ we can define the so-called information set Ik at step k: 

 

                                            (2.5) 
 

For convenience, let I0 = Θ. Then we can define the so-called concentrated information set Ck at 
step k as follows 
 

                                                             (2.6) 
 

which can be recursively written as 
 

                                                   (2.7) 
 

with initial set C0 = Θ. Eq. (2.7) with Eq. (2.5) is called information-concentration estimator 

(short for IC estimator) throughout this chapter, and any value in the set kC  can be taken as 

one possible estimate of unknown parameter θ  at time step k . The IC estimator differs 

from existing parameter identification in the sense that the IC estimator is in fact a set-

www.intechopen.com



Adaptive Control 

 

30 

valued estimator rather than a real-valued estimator. In practical applications, generally 

kC is a domain in 
dR , and naturally we can take the center point of  kC  as kθ̂ . 

Remark 2.1 The definition of information set varies with system model. In general cases, it can be 

extended to the set of possible instances of θ  (and/or f ) which do not contradict with the data at 

step k. We will see an example involving unknown f in next section. 
From the definition of the IC estimator, the following proposition can be obtained without 
difficulty: 
 
Proposition 2.1 Information-concentration estimator has the following properties: 
 

(i) Monotonicity: L⊇⊇⊇ 210 CCC  

 

(ii) Convergence: Sequence {Ck} has a limit set k
k
CC

∞
=∞ ∩=
1

; 

 

(iii) If the system model and the a priori knowledge are correct, then  must be a non-empty set 
with property θ   and any element of  can match the data and the model; 

 

(iv) If ∅=∞C , then the data  },{ kk zφ  cannot be generated by the system model used by the IC 

estimator under the specified a priori knowledge. 

 
Proposition 2.1 tells us the following particular points of the IC estimator: property (i) 
implies that the IC estimator will provide more and more exact estimation; property (ii) 
means that the there exists a limitation in the accuracy of estimation; property (iii) means 

that true parameter lies in every 
kC  if the system model and a priori knowledge are correct; 

and property (iv) means that the IC estimator provides also a method to validate the system 
model and the a priori knowledge. Now we discuss the IC estimator for model (2.4) in more 
details. In the following discussions, we only consider a typical a priori knowledge on 

kkk vvv ≤≤  are two known sequences of vectors (or scalars). 

 
2.3.1 Scalar case: d = 1 

By Eq. (2.5), we have 
 

 
 
Solving the inequality in Ik, we obtain that 
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and consequently, if 0≠kφ , then we have 

 

 
 
where 
 

 
 
Here sign(x) denotes the sign of x: sign(x) = 1, 0,−1 for positive number, zero, and negative 
number, respectively. Then, by Eq. (2.7), we can explicitly obtain that 
 

 
 

where  and  can be recursively obtained by 
 

 
 

 
Fig. 3. The straight line may intersect the polygon V and split it into two sub-polygons, one 
of which will become new polygon V'. The polygon V' can be efficiently calculated from the 
polygon V. 
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