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T H E A B S T R A C T 
 

 

 
P Vs NP problem is an open problem in the theory of optimization and asks whether two of 
the important complexity classes, P and NP are same. 

 

The P Vs NP problem directly affects one of the most basic things of our modern day survival, 
the Internet security. This classic problem in theoretical computer science was formulated by 
Stephen Cook in 1971. 

 

The  RSA  ciphering-deciphering  technology  or  public  key  cryptography  has  seeds  of  its 
success, in assumption of the fact that P is not equal to NP. If we assume truth of this paper’s 
result then newer methods have to be searched for coding public keys, and that is surely an 
interesting task as if now we have supposed to reach a stagnation point. 

 

The mathematical gain of supposed truth of this result is that it opens a search for solution of 
the 3000 plus NP complete problems and much more. 
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The present proof attempts to resolve P=NP by the proposed solution of NP complete 
Hamiltonians path problem or Euclidean Traveling Salesman Problem, in 2-D, in polynomial 
time. The proof is using topology, geometry and properties of convex polygons. The proof 
assumes Euclidean TSP in 2-D case and hence the triangle inequality is to be satisfied. 

 

We have attempted to find an optimal tour for Euclidean travelling salesman problem, by 
using methods described in the paper in polynomial time of order five i.e. O (5). 
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169 

Key   words: Polynomial   time   problem,   Non-deterministic   Polynomial   time   problem, 

Hamiltonians path problem, Euclidean Traveling salesman’s problem, NP-Complete problem. 
 

 
 
 
 

MEANING OF SYMBOLS 
 

P - Polynomial time problem 
 

170 NP - Non-deterministic polynomial time problem 
 

171 = - is equal to 
 

172 n - Pi (180 in trigonometry) 
 

173 # - Is not equal to 
 

174 nK - ‘n’ rose to power ‘K’ 
 

175 n! - n factorial 
 

176 C(n,k) - Combination of ‘n’ things taken ‘K’ at a time. 
 

177 I - Set of Integers. 
 

178 HPP - Hamiltonians path problem 
 

179 TSP - Traveling Salesman Problem 
 

180 
 

181 
 

182 

ETSP - Euclidean Traveling Salesman Problem 
 

 - This implies that 
 

 - Therefore 
 
 

183 
 
 

184 
 

185 
186 

187 
188 

DEFINITIONS 
 
 
 
 

 1.     P -     P means problems whose solution is bounded by a polynomial i.e. whose 

solution requires size of inputs expressible as a polynomial of the form  ,where n 

are number of inputs, k is an integer and C is an arbitrary constant. Such problems 
are said to be of order ‘n’ .Symbol P stands for ‘Polynomial’. 



Page 6 of 26  
 
 

 
189 
190 
191 

 

192 
193 

 

194 
 

195 
196 

 

197 
198 
199 

 

200 
201 
202 

 

203 

204 

 2.      NP-    NP means type of problems which are solvable in polynomial time by a 
non- deterministic Turing machine only. Symbol NP stands for ‘Non-deterministic 
Polynomial’. 

 

 3.    NP-Hard - A problem is said to be NP-Hard if an algorithm for solving it could be 
transformed to solving any other NP problem. 

 

 
 

 4.    NP- Complete- A problem which is both NP and NP-Hard is called NP complete 
problem. 

 

 5.     Triangle Inequality- According to the triangle inequality sum of two sides of a 
triangle is greater than the third side. In almost all cases of Euclidean TSP the 
triangle is satisfied. 

 

 6.    Local optimal tour: A tour may be termed as a local optimal tour if it is the 
optimal tour w.r.t. to the points existing on the network. This tour may or may not 
be the optimal tour. 

 

 7. Optimal branch: The optimal branch may be defined as the nearest branch chosen 
according to the lowest sum rule or ‘a+b-c rule.’ 

 

205  8.a+b-c rule: Refer page 12 
 

206 
207 

208 

 9. Interior local improvements: Local improvements are said to be interior local 
improvements if we change only the relative positions of points without 
constructing a virtual segment. 
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223 

 10. Exterior local improvements: If we change position of points by creating a 
virtual segment we get a external local improvement. Note that once this 
improvement is introduced we cannot return to our starting point by simply 
reversing the steps as reversal of a virtual segment is not defined as it is arbitrary. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. INTRODUCTION 
 

Computation complexity had its seeds sown way back in 1936 when Turing developed his 
theoretical computational model. Further developments resulted in 1960’s by Hartmanis and 
Stearns when they coined the idea to measure time and space as a function of the length of the 
input. 
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The work of Cook and Karp in early 70’s gave birth to the most important and fundamental 
concept of computational complexity, NP-Completeness and its most fundamental question, 
whether P= NP. 

 

 
 
 

 

 

1.1. THE COMPLEXITY CLASS OF P AND NP 
 

 

 

The relationship between the complexity class P and NP is an unsolved question in theoretical 
computer science. 

 

The  relationship  between  the  complexity  classes  P  and  NP  is  studied  in  computational 
complexity theory which deals with the resources required to solve a given problem. The 
resources may be the steps required to solve a problem and space needed for formulation of a 
solution. 

 

The computational machine in the context is assumed to be deterministic, i.e. it always performs 
sequential operations, one after another. 

 

Theoretically P class consists of problems that can be solved on a deterministic computational 
machine in amount of time which assumes polynomial equations in the size of inputs. 
Mathematically this is measured as order of a problem. For P class this is represented as O (K), 
where K is a positive integer .We are attempting a solution of order five i.e. O (5). 

 

On the other hand NP class means problems whose solution can only be verified on a 
deterministic computational machine and can be found only by a Non-deterministic 
computational machine in polynomial time. 

 

 
 
 

1.2. THE CONCEPT OF NP COMPLETENESS 
 

 

NP complete problems are those problems which are the ‘tough most’ and ‘hardest’ problems in 
NP.NP complete problems are those NP- hard problems which are in NP. 

 

Precisely  a  NP-hard  problem  is  one  into  which  any  NP  problem  can  be  transformed  in 
polynomial time. 

 

The beginning of NP- complete problems attributes to the Boolean satisfiability problem, which 
was proved to be NP complete by Stephen Cook in early 70’s.This is now also known as Cook’s 
theorem. The common NP complete problems are subset sum problem, minesweeper, Traveling 
salesman’s problem and Hamiltonian’s path problem. 
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269 

2. THE PROBLEM 
 
 
 
 

Statement: 
 

The P Vs NP problem has a classic one line statement whether P=NP? 

Mathematically P Vs NP states 

P = NP or P # NP i.e. whether or not P is equal to NP. 
 

 

2.1 MEANING AND DEFINITION OF P & NP: - 
 

 

P states for polynomial time problems, problems that can be effectively solved in polynomial 
time by using a deterministic computer. Polynomial time means reasonable time in common 
terms and in technical terms it means that it is expressible in the form of a polynomial equation. 

 

 P problems are characterized by a polynomial equation. 
 

270 

271 
i.e. P =CnK where n is the size of inputs or data and K is a positive integer. We call that these are 
of order K, i.e., O (K). 

 

272 Precisely 
 

273 P = Polynomial time i.e. time required to solve a P type problem. 
 

274 C = Arbitrary constant. 
 

275 n =Size of input or data. 
 

276 
 

277 
278 

 

279 
280 

 

281 
282 

 

283 

284 

K =Order of P type problem. 
 

Hence P represents a class of polynomial in which total numbers of outcomes are proportional 
to an integral power of inputs. 

 

NP problems are those in which time required to get a solution is unreasonably large, though 
the cases are too much, to calculate each case itself may need trivial arithmetic only. 

 

Only problem is number of cases, which are too large for a normal computer to handle fully in 
polynomial time. 

 

NP literally means non- deterministic polynomial time problem i.e. the problem which can be 
solved in polynomial time only by a non deterministic computational machine only. 

 

285 
 

286 

287 

A computer in polynomial or reasonable time cannot handle NP problem. 
 

More often than not there are NP problems that may take centuries for a full solution by brute- 
force method i.e. by method of checking all options. 

 

288 
 

289 
290 

There are about 3000 plus NP complete problems. 
 

A NP complete problem is one that is father of all NP problems. It means that if one NP 
complete problem is solvable in polynomial time so can be any other problem. 
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299 

Mathematically NP completeness is the generalization of NP problems. In order to prove or 
disprove P = NP, we have to prove or disprove it for one of those 3000 NP complete general, 
problems. 

 

 

2.2 RESULT: 
 

 

We propose a new result P =NP; We will establish this result for NP complete Hamiltonian’s 
path problem, or Euclidean Traveling salesman’s problem. We will  find an optimal tour for 
ETSP with the help of geometrical and topological properties of polygons. 

 

Our proof aims to solve Hamiltonian’s path problem or Euclidean Traveling salesman’s problem 
in polynomial time of fifth degree at most. 
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301 

302 

i.e. for HPP or TSP 
 

We propose P =Cn5 at most, i.e. NP complete ETSP can be effectively solved in polynomial time of 
order 5. 

 
 
 

303 3. THE PROOF 
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318 

Hamiltonian’s path problem HPP or Traveling salesman problem TSP is a well known NP 
complete problem. We would try to establish that it is solvable in polynomial time of fifth degree 
at most. Before that we must state TSP or HPP. 

 

ETSP: Suppose there is a salesperson that has to visit several cities in order to sell business. He 
has the specified map of all the cities that come in his way. Obviously his problem is to find 
shortest possible route or the optimal tour that covers all the cities. We assume Euclidean TSP 
onwards so triangle inequality is satisfied and all the maps are drawn on a 2-D plane. 

 

Obviously we can name all the routes and get the answer instantaneously. But the bone in the 
dish is not summing the distances from city to city. It is the number of such cases. 

 

For ‘n’ cities total cases turn out to be n! , which is a whopping number even for values of ‘n’ as 
small as 100. 

 

Therefore even for modest 100-city tour there are 100! cases. 
 

These cases are too large for a deterministic computer to handle. It may take decades for a 
fastest computer on earth to find optimal tour or shortest possible route for say 1000 cities only. 

 

Actually computers can handle polynomial time processes i.e. where P =Cnk. 
 

319 These Polynomials doesn’t grow that fast if ‘n’ is the variable or size of data. 
 

320 Here ‘n’ = Number of cities or size of data or input. 
 

321 P =Cn10 (say) 
 

322 
 

323 
 

324 
325 

Doesn’t grows as fast as say P =C.3n 

 
Here latter are called exponential time processes. After them comes NP processes. 

 

Now  we  will  prove  that  HPP  or ETSP  is  solvable  in  polynomial  time  using  geometrical & 
topological properties of polygons applied on topologically equivalent maps. 
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Mathematically we will show that total cases for ETSP are reducible to Cn^5 from n!, which 
means that the solution becomes polynomial. 

 

Our solution is geometrical in nature and assumes ETSP on topologically equivalent maps. 
 

For a start we assume that maps available are topologically correct i.e. in which relative 
distances matter and no scaling is required. The emphasis is on the property exhibited by each 
point and its relative position. 

 

For e.g. in Fig 1 below 
 

d(A1A2) < d (A1A3 ) < d (A1A4 )  etc. 
 

Here d(Ai Aj ) is usual  distance function measuring distance between any arbitrary points Ai 
and Aj relative to distance between other arbitrary points Am and An (say). 
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354 
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356 

Space for Fig.1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

These maps are topological maps only. We again state that the distances are relative only and 
emphasis is on the property exhibited by each point not on their actual position. 

 
 

357 3.1 THE ISSUE OF SHORTEST ROUTE-SPECIAL CASE 
 

358 POINTS ON THE PERIPHERY OF CONVEX POLYGON 
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We will state and prove a general theorem about shortest route through the periphery of a 
standard convex polygon.. We start with few definitions. 

 

 
 

Standard convex Polygon: A standard convex polygon or SCP for short is one in which all the 
internal angles are between 900and 1800. A peculiar property of SCP is that all diagonals are 
greater than the two sides forming it, or adjacent sides to it. It is easy to establish since in a 
right triangle hypotenuse is diagonal or greatest side and as the opposite angle grows the 
diagonal side dilates. So if one angle is larger than 900  then one side i.e. side opposite to the 
before said angle is the largest side. 

 

Now we are in a position to state our former result. 
 

3.2 THEOREM 
 

For all points lying on the periphery of a SCP, the shortest route between them is through 
the peripheral path. 

 

374 
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377 
 

378 
 

 
379 

 

 

380 

This can be established without any trouble. Any other route other than peripheral   route will 

include one or more diagonals. As stated before in SCP the diagonals are larger than the 

forming sides. Hence if three diagonals replace three sides they would increase the net distance. 
 

We can prove it rigorously too as follows: - 
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Space for Fig. 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Let the original route value along periphery be ‘N’ 
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401 

Case 1: When a diagonal is joined between two consecutive points 
 

Let A14  is joined to A12, so the point A13 is now out of network. [Refer Fig.2]. 
 

Now since we have to cover each point of the network, A13 has to be joined to some other 

point. Let A13 is joined to A3 and A4.These points are arbitrary .The important point is not the 

point but the property exhibited by each point. If A13 is joined to any other point the property 

exhibited by the point would be the same as with this point. Note we are talking of topological 

properties where only the relative position matters. 

402 Now new network distance is 
 

403 
 

N-A14A13-A13A12+A14A12+A3A13A4A13-A3A4 
 

404 

405 
 

406 

407 

408 
 

409 

410 
 

411 

Now A14A12   >A14A13 (A14A12 is the adjacent diagonal of SCP and by the definition of SCP it 

is greater than the side forming it) 
 

Further A3A13 >A13A12 (Since by the definition of SCP the shortest distance from a point on the 

periphery is next point to it on either side, all other branches from emerging from it are the 

diagonals) 
 

Finally A4A13>A3A4 (A4A13 is the adjacent diagonal of SCP and by the definition of SCP it is 

greater than the side forming it) 

412  The  Net  network  distance  increases  as  sum  of  the  adding  distances  is  greater  than  the 

413 
 

414 

415 
 

416 
 

417 
 

418 

419 

420 
 

421 
 

422 
 

423 

424 
 

425 
 

426 
 

427 

428 
 

429 
 

430 
 

431 

subtracting distances. 
 

Hence for the points laying on a standard polygon the shortest route or the optimal tour is 

along the periphery. 
 

 
 

Case 2: When a diagonal is joined between any two non consecutive points 
 

We now consider the case when a diagonal is joined between non consecutive points. The proof 

is similar. Let us take any arbitrary point .Let a diagonal be joined between A5A10.So points 

from A6 to A9 are abundant. Let these points be joined to segment A1A15. 
 

Now adding distance =A5A10 +A1A6+A9A15 
 

And subtracting distance=A5A6+A9A10+A1A15 
 

Now  A5A10  >  A5A6 (A5A10  is  the  adjacent  diagonal  to  A5A6  and  by  definition  of  SCP 

former is greater than the latter) 
 

A1A6 > A1A15 (Same reason as above) 
 

&  A9A15 > A9A10   (Same reason as above) 
 

As stated before this proof is general since the relative position of points and property exhibited 

by the point matters. 



Page 13 of 26  
 
 

 
432 

 

433 

434 

435 

436 
 

437 

 
 

IMPORTANT: Although this theorem is a new result but the proof works very well without the 

assumptions of the proof. This proof may save few steps but it does in no way affect the truth of 

the result (given in next section) or the order of given problem. This is provided only as a 

guideline for the shortest route if the points lie on the periphery of a SCP. 
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6. THE ISSUE OF SHORTEST ROUTE OR THE OPTIMAL TOUR-GENERAL 

4. THE ISSUE OF SHORTEST ROUTE OR 
THE OPTIMAL TOUR-GENERAL CASE 

 
 

441 
 

 
 

442 4.1 THE GENERAL DOMAIN 
 

 

443 How can we use the before proved theorem or otherwise, to get the shortest route or the 

444 optimal tour between the points? 

445 Here is a possible answer. 

446  

447  

448 
 
449 

 

 
 

. . 

450 . . . . .    . .   . . . 

451 . . . .  . . 

452 . . . . . . . . . 

453 . . . . 

454 . . . . . . . .    . 

455 . . . . . . 

456 . . . . . . .  . 

457 .. . .. . . . . 

458 . 

459 . . . . . . . 

460 . . . 

461  
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Consider the general domain of points shown above. The orientation of the points is 
arbitrary. The important point is not the points or their placement but the property 
exhibited by each point and its relative position. Our basic approach for the shortest 
route is that we start from the shortest and keep it shortest all the while. With the help 
of this approach we will get a shorter tour which is at least locally optimal, i.e. optimal 
w.r.t. to the starting points. After that we apply corrections or arrays of corrections to 
get the optimal (Universal) tour. Even if the previous result is not used in general we 
start from any route and with the process of constantly improving our route and 
discarding longer routes in the process we reach at the shortest route. The method used 
is basically the method of elimination of longer routes and careful selection of shorter 
routes. 

 

We start with the ouster most mesh of one map and join them so the maximum numbers 
of destinations lie on a standard convex polygon. From theorem the shortest route lies 
on the periphery for these cities. Even if it does not hold good then also we join them to 
all the exterior points and proceed. 

 

Our next object is to join to these branches the points which are nearest to them than 
any other two points, branch or segment. For this we calculate ‘ a +b - c’ for all ‘n’ cities 
for all the branches of Outer mesh if ‘ a +b - c’ is minimum for any of the branches we 
join it to the branch. This may be termed as nearest or cheapest insertion to the outer 
convex shell. 

 

485 

486 
We would like to define ‘ a + b - c’ rule. In the Fig.[3] if point O is added to the network 
to the segment A1A2 then 

 

487 a = Adding distance on the segment of the network due to new point O and 
 

488 
 

489 

point A1 of line segment A1A2. 

 

490 b = Adding distance on the segment of the network due to new point O and 
 

491 point A2 of line segment A1A2. 
 

492 
 

493 

c = Subtracting distance on the network due to the segment A1A2. 

 

494 
 

495 
 

496 
 

497 
 

498 

Space for Fig.3 
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 a +b - c 

 

504 
 

505 
506 

 

507 
508 

 

509 

= Net addition to the existing network due to new point ‘O’. 
 

As seen above for the section A1O, A2O is the adding distances & A1A2 is the subtracting 
distance from the network, see [Fig.3]. We find this value for all segments 

 

We repeat the process for new joined branches till we reach a network that looks like 
[Fig.4] 
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Space for Fig. 4 
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524 
525 
526 
527 
528 
529 
530 
531 

The above network has following properties. 
 

This is the shortest route or the optimal tour (local optimal tour) between the points on 
the network joined so far. No confusion about the term local optimal tour should stem 
out. This is the optimal tour for the points joined so far w.r.t. themselves but this is a 
local optimal tour w.r.t. the points all the points as better combination may exist 
between these and other points in the optimal tour. We would take this case under the 
heading virtual segments or hypothetical diagonals. The virtual segment case puts each 
point under testimony, and each point is considered vulnerable to a change in position, 
after application of point to segment (Section 6.1) and segment to segment rule (Section 
6.2). 
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All the points that are left are either nearer to themselves or to branches other than on 
the network. These may be called hypothetical diagonals or virtual segments. The name 
pops up as they are hypothetical diagonals or virtual segments which can still be joined 
between the points on the already existing network of [Fig.4] 

 
 
 
 
 

4.2 THE NEXT NETWORK CASE 
 

 

After we have the original network intact we start with other independent points, independent 

in the sense they are nearer to themselves than to any of the points on the existing network. We 

repeat the same process of the general domain till all the points gets exhausted [refer to Fig. 5]. 
 
 
 

Space for Fig. 5 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
So our net shortest route may now look like fig. 5. We have taken four networks for simplicity. 

 

The   four   networks   are   respectively   the   shortest   route   between   the   particles   of   the 

corresponding networks .We now use segment rule to join these networks. 
 

It is that the networks are joined via the closest segment. 
 

The segment length is calculated as follows. (For details refer section 6.4) 
 

‘a + b -c -d  ’; Here a ,b are adding distance & c , d are subtracting distances. 
 

Suppose we have to join A1A2 to B2B3  [Refer Fig. 6]. 
 

The net adding distance is 

a =A1B2 

b =A2B3   & 
 

Net subtracting distance is A1A2  &  B2B3. Similarly we check for other segment B3B4 (say). 
 

For whichever two segments the ‘a +b -c -d’ is minimum we join them. 
 

Next case is the case of hypothetical diagonals. Now our shortest route may look like 
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