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1. Historical background 

Process control has become an integral part of process plants. An automatic controller must 
be able to facilitate the plant operation over a wide range of operating conditions. The 
proportional-integral (PI) or proportional-integral-derivative (PID) controllers are 
commonly used in many industrial control systems. These controllers are tuned with 
different tuning techniques to deliver satisfactory plant performance.  
 

 
Fig. 1. MPC multi-step prediction scheme. 
 
However, specific control problems associated with the plant operations severely limit the 
performance of conventional controllers. The increasing complexity of plant operations 
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together with tougher environmental regulations, rigorous safety codes and rapidly 
changing economic situations demand the need for more sophisticated process controllers.  
Model predictive control (MPC) is an important branch of automatic control theory. MPC 
refers to a class of control algorithms in which a process model is used to predict and 
optimize the process performance. MPC has been widely applied in industry (Qin and 
Badgwell, 1997). The idea of MPC is to calculate a control function for the future time in 
order to force the controlled system response to reach the reference value. Therefore, the 
future reference values are to be known and the system behavior must be predictable by an 
appropriate model. The controller determines a manipulated variable profile that optimizes 
some open-loop performance objective over a finite horizon extending from the current time 
into the future. This manipulated variable profile is implemented until a plant measurement 
becomes available. Feedback is incorporated by using the measurement to update the 
optimization problem for the next time step. Figure 1 explains the basic idea of MPC 
showing how the past input-output information is used to predict the future process 
behavior at the current time and how this information is extended to future to track the 
desired setpoint trajectory. The notation y, u and Ts refer process output, control action and 
sample time, respectively. 

 
2. Model predictive control scheme 

Model predictive control (MPC) refers to a wide class of control algorithms that use an 
explicit process model to predict the behavior of a plant. The most significant feature that 
distinguishes MPC from other controllers is its long range prediction concept. This concept 
enables MPC to perform current computations to account the future dynamics, thus 
facilitating it to overcome the limitations of process dead time, non-minimum phase 
behavior and slow dynamics. In addition, MPC exhibits superior performance by 
systematically handling constraints violation.  
 

 
Fig. 2. MPC block diagram. 

The fundamental framework of MPC algorithms is common for any kind of MPC schemes. 
The main differences in many MPC algorithms are the types models used to represent the 
plant dynamics and the cost function to be minimized. The multi-step model predictive 
control scheme shown in Figure 1 can be realized from the block diagram represented in 
Figure 2.  
The basic elements in the block diagram are defined as follows. An appropriate model is 
used to predict the process outputs, ( ), 1,....,y t i i N  over a future time interval known 
as prediction horizon, N. A sequence of control actions, u(t+j), j=1,…., m over the control 
horizon m are calculated by minimizing some specified objective which is a function of 
predicted outputs, y(t+i), set-point values, w(t+i) and control actions, u(t). The first control 
move, u(t) of the sequence is implemented and the calculations are repeated for the 
subsequent sampling instants. In order to account the plant-model mismatch, a prediction 
error, d(t), that is calculated based on plant measurement, y(t) and model prediction, ym(t) is 
used to update the  future predictions.  
In MPC, the control law generates a control sequence, which forces the future system 
response to be equal to the reference values. The system response is based on future control 
actions, model parameters and the actual system states. Many methods for updating the 
optimization problem are possible, such as estimating model parameters and/or states, 
inferring about disturbances etc. MPC design considers different types of process models. 
These include first principle models, auto regressive moving average models, polynomial 
models, neural network models, fuzzy models etc. The attraction for MPC is due to its 
capability of handling various constraints directly in the formulation through on-line 
optimization. A variety of model predictive control techniques have been reported for 
controlling the processes of various complexities.    
This chapter presents different linear and nonlinear model predictive controllers with case 
studies illustrating their application to real processes. 

 
3. Linear model predictive control 

Linear MPC (LMPC) algorithms employ linear or linearized models to obtain the predictive 
response of the controlled process. These algorithms include the Model Algorithmic Control 
(MAC) (Richalet et al., 1978), the Dynamic Matrix Control (DMC) (Cutler and Ramaker, 
1980) and the Generalized Predictive Control (GPC) (Clarke et al., 1987). These algorithms 
are all similar in the sense that they rely on process models to predict the behavior of the 
process over some future time interval, and the control calculations are based on these 
model predictions. The models used for these predictions have usually been derived from 
linear approximations of the process or experimentally obtained step response data. A 
survey of theory and applications of such algorithms have been reported by Garcia et al. 
(1989).  

 
3.1 LMPC design  
A classical autoregressive moving average (ARX) model structure that relates the plant 
output with the present and past plant input-output can be used to formulate a predictive 
model. The model parameters can be determined a priori by using the known input-output 
data to form a fixed predictive model or these parameters are updated at each sampling 
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time by an adaptive mechanism. The one step ahead predictive model can be recursively 
extended to obtain future predictions for the plant output. The minimization of a cost 
function based on future plant predictions and desired plant outputs generates an optimal 
control input sequence to act on the plant. The strategy is described as follows. 
 
Predictive model   
The relation between the past input-output data and the predicted output can be expressed 
by an ARX model of the form   
 
  y(t+1) = a1y(t) + . . . + anyy(t-ny+1) + b1u(t) +. . . . . . . + bnuu(t-nu+1)  (1) 
 
where y(t) and u(t) are the process and controller outputs at time t, y(t+1) is the one-step 
ahead model prediction at time t, a’s and b’s represent the model coefficients and the nu and 
ny are input and output orders of the system.    
 
Model identification  
 
The model output prediction can be expressed as 
            
  ym(t+1) =  xm(t)  (2) 
where 
  = [1 . . . ny 1 . . . nu]   (3) 
and  
  xm(t) = [y(t) . . . y(t-ny+1)  u(t) . . . u(t-nu+1)]T   (4)  
 
with   and    as  identified model parameters. 
One of the most widely used estimators for model parameters and covariance is the popular 
recursive least squares (RLS) algorithm (Goodwin and Sin, 1984). The RLS algorithm 
provides the updated parameters of the ARX model in the operating space at each sampling 
instant or these parameters can be determined a priori using the known data of inputs and 
outputs for different operating conditions. The RLS algorithm is expressed as  
 

   (t+1) =  (t)  + K(t) [y(t+1) - ym(t+1)]   
 K(t) = P(t) xm(t+1) / [1 +  xm(t+1)T P(t) xm(t+1)]  (5) 
 P(t+1) = 1/ [P(t) - {( P(t) xm(t+1) xm(t+1)T P(t)) / (1 +  xm(t+1)T P(t) xm(t+1))}]  
 

where (t) represents the estimated parameter vector,  is the forgetting factor, K(t) is the 
gain matrix and P(t) is the covariance matrix.  
 
Controller formulation   
 
The N time steps ahead output prediction over a prediction horizon is given by 
 

 1( )py t N    y(t+N-1)+...+nyy(t-ny+N)+1u(t+N-1)+...+nuu(t-nu+N)+err(t)  (6) 
 

where yp(t+N) represent the model predictions for N steps and err(t) is an estimate of the 
modeling error which is assumed as constant for the entire prediction horizon. If the control 
horizon is m, then the controller output, u after m time steps can be assumed to be constant. 

An internal model is used to eliminate the discrepancy between model and process outputs, 
error(t), at each sampling instant 
  error(t) = y(t) - ym(t)  (7) 
 

where ym(t) is the one-step ahead model prediction at time (t-1). The estimate of the error is 
then filtered to produce err(t) which minimizes the instability introduced by the modeling 
error feedback. The filter error is given by 
 

 err(t) = (1-Kf) err(t-1) + Kf  error(t)  (8) 
 

where Kf  is the feedback filter gain which has to be tuned heuristically. 
Back substitutions transform the prediction model equations into the following form 
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The elements f, g and e  are recursively calculated using the parameters  and  of  
Eq. (3). The above equations can be written in a condensed form as 
 

 Y(t) = F X(t) + G U(t) + E err(t)  (10)  
 

where 
 Y(t) = [yp(t+1) . . . yp(t+N)]T  (11)  
 X(t) = [y(t)   y(t-1) . . . y(t-ny+1)   u(t-1) . . . u(t-nu+1)]T  (12)  
 U(t) = [u(t) . . . u(t+m-1)]T  (13) 
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In the above, Y(t) represents the model predictions over the prediction horizon, X(t) is a 
vector of past plant and controller outputs and U(t) is a vector of future controller outputs. If 
the coefficients of F, G and E are determined then the transformation can be completed. The 
number of columns in F is determined by the ARX model structure used to represent the 
system, where as the number of columns in G is determined by the length of the control 
horizon. The number of rows is fixed by the length of the prediction horizon. 
 
Consider a cost function of the form 

  2 2

1 1
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N m

p
i i

J y t i w t i u t i
 
           

    
1 1

( ) ( ) ( ) ( ) ( ) ( )
N m
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i i

Y t W t Y t W t U t U t
 

       (14)                   

where W(t) is a setpoint vector over the prediction horizon 
 
    W(t) = [ w(t+1) . .  .  . w(t+N)]T  (15)                          
 
The minimization of the cost function, J gives optimal controller output sequence 
            
 U(t) = [GTG + I ]-1GT[W(t) - FX(t) - Eerr(t)]  (16)                          
          
The vector U(t) generates control sequence over the entire control horizon. But, the first 
component of U(t) is actually implemented and the whole procedure is repeated again at the 
next sampling instant using latest measured information. 
Linear model predictive control involving input-output models in classical, adaptive or 
fuzzy forms is proved useful for controlling processes that exhibit even some degree of 
nonlinear behavior (Eaton and Rawlings, 1992; Venkateswarlu and Gangiah, 1997 ; 
Venkateswarlu and Naidu, 2001). 

 
3.2 Case study: linear model predictive control of a reactive distillation column 
In this study, a multistep linear model predictive control (LMPC) strategy based on  
autoregressive moving average (ARX) model structure is presented for the control of a 
reactive distillation column. Although MPC has been proved useful for a variety of chemical 
and biochemical processes (Garcia et al., 1989 ; Eaton and Rawlings, 1992), its application to 
a complex dynamic system like reactive distillation is more interesting.  
 
The process and the model 
Ethyl acetate is produced through an esterfication reaction between acetic acid and ethyl 
alcohol 

 5232523 HCOOCCHOHOHHCCOOHCH H     (17) 
 
The achievable conversion in this reversible reaction is limited by the equilibrium 
conversion. This quaternary system is highly non-ideal and forms binary and ternary 

azeotropes, which introduce complexity to the separation by conventional distillation. 
Reactive distillation can provide a means of breaking the azeotropes by altering or 
eliminating the conditions for azeotrope formation. Thus reactive distillation becomes 
attractive alternative for the production of ethyl acetate.  
The rate equation of this reversible reaction in the presence of a homogeneous acid catalyst 
is given by (Alejski and Duprat, 1996) 
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6500.1(4.195 0.08815)exp( )

7.558 0.012

c

k

c

kr k C C C C
K

k C T
K T

 
  
 

  (18) 

 
Vora and Daoutidis (2001) have presented a two feed column configuration for ethyl acetate 
reactive distillation and found that by feeding the two reactants, ethanol and acetic acid, on 
different trays counter currently allows to enhance the forward reaction on trays and results 
in higher conversion and purity over the conventional column configuration of feeding the 
reactants on a single tray. All plates in the column are considered to be reactive. The column 
consists of 13 stages including the reboiler and the condenser. The less volatile acetic acid 
enters the 3 rd tray and the more volatile ethanol enters the 10 th tray. The steady state 
operating conditions of the column are shown in Table 1.  

 
 

Acetic acid feed flow rate, FAc                             6.9 mol/s                 
Ethanol flow rate, FEth                              6.865 mol/s      
Reflux flow rate, Lo                                            13.51 mol/s  
Distillate flow rate, D                                             6.68 mol/s  
Bottoms flow rate, B                                              7.085 mol/s  
Reboiler heat duty, Qr                                            5.88 x 105 J/mol     
Boiling points, oK                                           391.05, 351.45, 373.15, 350.25 
(Acetic acid, ethanol, water, ethyl acetate)    
Distillate composition                                     0.0842, 0.1349, 0.0982, 0.6827 
(Acetic acid, ethanol, water, ethyl acetate)    
Bottoms composition                                      0.1650, 0.1575, 0.5470, 0.1306 
(Acetic acid, ethanol, water, ethyl acetate)    

 
Table 1. Design conditions for ethyl acetate reactive distillation column 
 
The dynamic model representing the process operation involves mass and component 
balance equations with reaction terms, along with energy equations supported by vapor-
liquid equilibrium and physical properties (Alejski & Duprat, 1996). The assumptions made 
in the formulation of the model include adiabatic column operation, negligible heat of 
reaction, negligible vapor holdup, liquid phase reaction, physical equilibrium in streams 
leaving each stage, negligible down comer dynamics and negligible weeping of liquid 
through the openings on the tray surface. The equations representing the process are given 
as follows. 
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Table 1. Design conditions for ethyl acetate reactive distillation column 
 
The dynamic model representing the process operation involves mass and component 
balance equations with reaction terms, along with energy equations supported by vapor-
liquid equilibrium and physical properties (Alejski & Duprat, 1996). The assumptions made 
in the formulation of the model include adiabatic column operation, negligible heat of 
reaction, negligible vapor holdup, liquid phase reaction, physical equilibrium in streams 
leaving each stage, negligible down comer dynamics and negligible weeping of liquid 
through the openings on the tray surface. The equations representing the process are given 
as follows. 
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VLE calculations 
 
For the column operation under moderate pressures, the VLE equation assumes the ideal 
gas model for the vapor phase, thus making the vapor phase activity coefficient equal to 
unity. The VLE relation is given by 
 
 yi P = xi i Pisat       (i = 1,2,….,NC)   (32) 
 
The liquid phase activity coefficients are calculated using UNIFAC method (Smith et al., 
1996). 
 
Enthalpies Calculation 
The relations for the liquid enthalpy h, the vapor enthalpy H and the liquid density   are: 
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Control scheme 
 
The design and implementation of the control strategy is studied for the single input-single 
output (SISO) control of the ethyl acetate reactive distillation column with its double feed 
configuration. The objective is to control the desired product purity in the distillate stream 
inspite disturbances in column operation. This becomes the main control loop. Since reboiler 
and condenser holdups act as pure integrators, they also need to be controlled. These 
become the auxiliary control loops. Reflux flow rate is used as a manipulated variable to 
control the purity of the ethyl acetate. Distillate flow rate is used as a manipulated variable 
to control the condenser holdup, while bottom flow rate is used to control the reboiler 
holdup. In this work, it is proposed to apply a multistep model predictive controller for the 
main loop and conventional PI controllers for the auxiliary control loops. This control 
scheme is shown in the Figure 3.  
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Fig. 3. Control structure of two feed ethyl acetate reactive distillation column. 
 
Analysis of Results  
The performance of the multistep linear model predictive controller (LMPC) is evaluated 
through simulation. The product composition measurements are obtained by solving the 
model equations using Euler’s integration with sampling time of 0.01 s. The input and 
output orders of the predictive model are considered as nu = 2 and ny = 2. The diagonal 
elements of the initial covariance matrix, P(0) in the RLS algorithm are selected as 10.0, 1.0, 
0.01, 0.01, respectively. The forgetting factor,  used in recursive least squares is chosen as 
5.0. The feedback controller gain Kf  is assigned as 0.65. The tuning parameter   in the 
control law is set as  0.115 x 10-6. The PI controller parameters of ethyl acetate composition 
are evaluated by using the continuous cycling method of Ziegler and Nichols. The tuned 
controller settings  are kc = 11.15 and  I = 1.61 x 104 s. The PI controller parameters used for 

reflux drum and reboiler holdups are kc =  - 0.001 and I = 5.5 h,  and kc =  - 0.001 and  

I  = 5.5 h, respectively (Vora and Daoutidis, 2001).  
The LMPC is implemented by adaptively updating the prediction model using recursive 
least squares. On evaluating the effect of different prediction and control horizons, it is 
observed that the LMPC with a prediction horizon of around 5 and a control horizon of 2  
has shown reasonably better control performance. The LMPC is also referred here as MPC. 
Figure 4 shows the results of MPC and PI controller when they are applied for tracking 
series of step changes in ethyl acetate composition. The regulatory control performance of 
MPC and PI controller for 20% decrease in feed rate of acetic acid is shown in Figure 5. The 
results thus show the effectiveness of the multistep linear model predictive control strategy 
for the control of highly nonlinear reactive distillation column. 

 
Fig. 4. Performance of MPC and PI controller for tracking series of step changes in distillate 
composition. 
 

 
Fig.5. Output and input profiles for  MPC and PI controller for  20% decrease in the feed rate 
of acetic acid. 
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4. Generalized predictive control 

The generalized predictive control (GPC) is a general purpose multi-step predictive control 
algorithm (Clarke et al., 1987) for stable control of processes with variable parameters, 
variable dead time and a model order which changes instantaneously. GPC adopts an 
integrator as a natural consequence of its assumption about the basic plant model. Although 
GPC is capable of controlling such systems, the control performance of GPC needs to be 
ascertained if the process constraints are to be encountered in nonlinear processes. Camacho 
(1993) proposed a constrained generalized predictive controller (CGPC) for linear systems 
with constrained input and output signals. By this strategy, the optimum values of the 
future control signals are obtained by transforming the quadratic optimization problem into 
a linear complementarity problem. Camacho demonstrated the results of the CGPC strategy 
by carrying out a simulation study on a linear system with pure delay. Clarke et al. (1987) 
have applied the GPC to open-loop stable unconstrained linear systems. Camacho applied 
the CGPC to constrained open-loop stable linear system. However, most of the real 
processes are nonlinear and some processes change behavior over a period of time. 
Exploring the application of GPC to nonlinear process control will be more interesting.  
In this study, a constrained generalized predictive control (CGPC) strategy is presented and 
applied for the control of highly nonlinear and open-loop unstable processes with multiple 
steady states. Model parameters are updated at each sampling time by an adaptive 
mechanism.  

 
4.1 GPC design 
A nonlinear plant generally admits a local-linearized model when considering regulation 
about a particular operating point. A single-input single-output (SISO) plant on linearization 
can be described by a Controlled Autoregressive Integrated Moving Average (CARIMA) 
model of the form 
 A(q-1)y(t) = B(q-1)q-d u(t) + C (q-1)e(t )/  (34) 
 
where A, B and C are polynomials in the backward shift operator q-1. The y(t) is the 
measured plant output, u(t) is the controller output, e(t) is the zero mean random Gaussian 
noise, d is the delay time of the system and  is the differencing operator 1-q-1. 
The control law of GPC is based on the minimization of a multi-step quadratic cost function 
defined in terms of the sum of squares of the errors between predicted and desired output 
trajectories with an additional term weighted by projected control increments as given by  
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               (35) 

 
where E{.} is the expectation operator, y(t + j| t ) is a sequence of predicted outputs, w(t + j) 
is a sequence of future setpoints, u(t + j -1) is a sequence of predicted control increments 
and  is the control weighting factor. The N1 , N2 and N3 are the minimum costing horizon, 
the maximum costing horizon and the control horizon, respectively. The values of N1 , N2 
and N3 of Eq. (35) can be defined by N1 = d + 1, N2 = d + N, and N3 = N, respectively. 

Predicting the output response over a finite horizon beyond the dead-time of the process 
enables the controller to compensate for constant or variable time delays. The recursion of 
the Diophantine equation is a computationally efficient approach for modifying the 
predicted output trajectory.  An optimum j-step a head prediction output is given by 
 
  y(t + j| t) = Gj (q-1 ) u(t + j - d - 1) + Fj (q-1 )y(t)  (36) 
 
where Gj (q-1 ) = Ej (q-1 )B(q-1), and Ej and Fj are polynomials obtained recursively solving the 
Diophantine equation, 
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j
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The j-step ahead optimal predictions of  y for  j = 1, . . . , N2 can be written in condensed form 
 
 Y =Gu + f  (38) 
 
where f contains predictions based on present and past outputs up to time t and past inputs 
and referred to free response of the system, i.e., f = [f1, f2, ….., fN]. The vector u corresponds 
to the present and future increments of the control signal, i.e., u = [u(t),  u(t+1), ……., 
u(t+N-1)]T.  Eq. (35) can be written as  
 

     uuwfGuwfGuJ TT     (39) 
 
The minimization of J gives unconstrained solution to the projected control vector 
 

 )()( 1 fwGIGGu TT     (40) 
 
The first component of the vector u is considered as the current control increment u(t), 
which is applied to the process and the calculations are repeated at the next sampling 
instant. The schematic of GPC control law is shown in Figure 6, where K is the first row of 
the matrix 1( )T TG G I G  .   

 
 

 
 
 
 
 
 
 
 
 

 

Fig. 6. The GPC control law 
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4.2 Constrained GPC design  
In practice, all processes are subject to constraints. Control valves are limited by fully closed 
and fully open positions and maximum slew rates. Constructive and safety reasons as well 
as sensor ranges cause limits in process variables. Moreover, the operating points of plants 
are determined in order to satisfy economic goals and usually lie at the intersection of 
certain constraints. Thus, the constraints acting on a process can be manipulated variable 
limits (umin, umax ), slew rate limits of the actuator (dumin, dumax), and limits on the output 
signal (ymin, ymax ) as given by 
 
 maxmin )( utuu   

 maxmin )1()( dututudu    (41) 

 maxmin )( ytyy   
 
These constraints can be expressed as 
 
 maxmin )1( lultuTulu   

 maxmin lduuldu         (42) 

 maxmin lyfGuly   
 
where l is an N  vector containing ones, and T is an N x N lower triangular matrix containing 
ones. By defining a new vector x = u - ldumin, the constrained equations can be transformed 
as 
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Eq. (39) can be expressed as 
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The minimization of J with no constraints on the control signal gives 
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Eq. (45) in terms of the newly defined vector x becomes 
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The solution of the problem can be obtained by minimization of Eq. (47) subject to the 
constraints of Eq. (43). By using the Lagrangian multiplier vectors v1 and v for the 
constraints, x ≥ 0 and Rx ≤ c, respectively, and introducing the slack variable vector v2, the 
Kuhn-Tucker conditions can be expressed as 
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Camacho (1993) has proposed the solution of this problem with the help of Lemke’s 
algorithm (Bazaraa and Shetty, 1979) by expressing the Kuhn-Tucker conditions as a linear 
complementarity problem starting with the following tableau 
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Here, z0 is the artificial variable which will be driven to zero iteratively. 
 
In this study, the above stated constrained generalized predictive linear control of Camacho 
(1993) is extended to open-loop unstable constrained control of nonlinear processes. In this 
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strategy, process nonlinearities are accounted through adaptation of model parameters 
while taking care of input and output constraints acting on the process. The following 
recursive least squares formula (Hsia, 1977) is used for on-line estimation of parameters and 
the covariance matrix after each new sample: 
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where θ is the parameter vector, γ is the intermediate estimation variable, P is the covariance 
matrix, v is the vector of input-output variables, y is the output variable, and 0 <  < 1 is the 
forgetting factor. The initial covariance matrix and exponential forgetting factor are selected 
based on various trials so as to provide reasonable convergence in parameter estimates. 
 
The CGPC strategy of nonlinear processes is described in the following steps: 
 

1. Specify the controller design parameters N1, N2, N3 and also the initial parameter   
estimates and covariance matrix for recursive identification of model parameters. 

2.  Update the model parameters using recursive least squares method. 
3.  Initialize the polynomials E1 and F1 of Diophantine identity, Eq. (37), using the estimated 

parameters. Further initialize G1 as E1 B. 
4.  Compute the polynomials Ej , Fj and Gj over the prediction horizon and control horizon 

using the recursion of Diophantine. 
5.  Compute matrices H, R, and G, and  vectors f and c using the polynomials determined in 

step 4. 
6.  Compute the unconstrained solution xmin = - H-1 a. 
7.  Compute v2min = c - Rxmin . If xmin and v2min are nonnegative, then go to step 10. 
8.  Start Lemke’s algorithm with x and v2 in the basis with the tableau, Eq. (49). 
9.  If x1 is not in the first column of the tableau, make it zero; otherwise, assign it the  

corresponding value. 
10. Compute u(t) = x1 + dumin + u(t - 1). 
11. Implement the control action, then shift to the next sampling instant and go to step 2. 

         
4.3 Case study: constrained generalized predictive control (CGPC) of open-loop 
unstable CSTR 
The design and implementation of the CGPC strategy is studied by applying it for the 
control of a nonlinear open-loop unstable chemical reactor (Venkateswarlu and Gangiah, 
1997).  
 
Reactor 
A continuous stirred tank reactor (CSTR) in which a first order exothermic irreversible 
reaction occurs is considered as an example of an unstable nonlinear process. The dynamic 
equations describing the process can be written as 
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where CA and Tr are reactant concentration and temperature, respectively. The coolant 
temperature Tc is assumed to be the manipulated variable. Following the analysis of Uppal 
et al. (1974), the model is made dimensionless by introducing the parameters as 
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where Fo, CAfo and Tfo are the nominal characteristic values of volumetric flow rate, feed 
composition and feed temperature, respectively. The corresponding dimensionless variables 
are defined by 
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where Tco is some reference value for the coolant temperature.  
The modeling equations can be written in dimensionless form (Calvet and Arkun, 1988; 
Hernandez and Arkun, 1992) as 
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 y = x1 
 
where x1 and x2 are the dimensionless reactant concentration and temperature, respectively. 
The input u is the cooling jacket temperature, Da is the Damkohler number,  is the 
dimensionless activation energy, Bh is the heat of reaction and  is the heat transfer coeffi- 
cient. If the physical parameters chosen are Da = 0.072,  = 20.0, Bh = 8.0, and  = 0.3, then the 
system can exhibit up to three steady states,  one of which is unstable as shown in Figure 7. 
Here the task is to control the reactor at and around the unstable operating point. The 
cooling water temperature is the input u, which is the manipulated variable to control the 
reactant concentration, x1.  
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strategy, process nonlinearities are accounted through adaptation of model parameters 
while taking care of input and output constraints acting on the process. The following 
recursive least squares formula (Hsia, 1977) is used for on-line estimation of parameters and 
the covariance matrix after each new sample: 
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where θ is the parameter vector, γ is the intermediate estimation variable, P is the covariance 
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where Tco is some reference value for the coolant temperature.  
The modeling equations can be written in dimensionless form (Calvet and Arkun, 1988; 
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where x1 and x2 are the dimensionless reactant concentration and temperature, respectively. 
The input u is the cooling jacket temperature, Da is the Damkohler number,  is the 
dimensionless activation energy, Bh is the heat of reaction and  is the heat transfer coeffi- 
cient. If the physical parameters chosen are Da = 0.072,  = 20.0, Bh = 8.0, and  = 0.3, then the 
system can exhibit up to three steady states,  one of which is unstable as shown in Figure 7. 
Here the task is to control the reactor at and around the unstable operating point. The 
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